Publications by authors named "Jianghui Tang"

Here, we present a protocol for collecting, dissociating, isolating, staining, and analyzing immune cells from pancreatic cancer tissues for flow cytometry. The isolated cells can also be used for single-cell RNA sequencing and other related procedures. For complete details on the use and execution of this protocol, please refer to Zhang et al.

View Article and Find Full Text PDF

Aims: The electroencephalography (EEG) microstates are indicative of fundamental information processing mechanisms, which are severely damaged in patients with prolonged disorders of consciousness (pDoC). We aimed to improve the topographic analysis of EEG microstates and explore indicators available for diagnosis and prognosis prediction of patients with pDoC, which were still lacking.

Methods: We conducted EEG recordings on 59 patients with pDoC and 32 healthy controls.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is not sensitive to immune checkpoint blockade therapy, and negative feedback of tumor immune evasion might be partly responsible. We isolated CD8+ T cells and cultured them in vitro. Proteomics analysis was performed to compare changes in Panc02 cell lines cultured with conditioned medium, and leucine-rich repeat kinase 2 (LRRK2) was identified as a differential gene.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer that typically demonstrates resistance to chemotherapy. Tumor-associated macrophages (TAMs) are essential in tumor microenvironment (TME) regulation, including promoting chemoresistance. However, the specific TAM subset and mechanisms behind this promotion remain unclear.

View Article and Find Full Text PDF

Background: Solid tumors pose unique roadblocks to treatment with chimeric antigen receptor (CAR) T cells, including limited T-cell persistence, inefficient tumor infiltration, and an immunosuppressive tumor microenvironment. To date, attempts to overcome these roadblocks have been unsatisfactory. Herein, we reported a strategy of combining (encoding RUNX family transcription factor 3)-overexpression with ex vivo protein kinase B (AKT) inhibition to generate CAR-T cells with both central memory and tissue-resident memory characteristics to overcome these roadblocks.

View Article and Find Full Text PDF

Rationale: Hypoxia in tumor microenvironment (TME) represents an obstacle to the efficacy of immunotherapy for pancreatic ductal adenocarcinoma (PDAC) through several aspects such as increasing the expression of immune checkpoints or promoting fibrosis. Reversing hypoxic TME is a potential strategy to improve the validity of immune checkpoint blockade (ICB).

Methods: Here, we synthesized polydopamine-nanoparticle-stabilized oxygen microcapsules with excellent stabilization, bioavailability, and biocompatibility for direct oxygen delivery into tumor sites by interfacial polymerization.

View Article and Find Full Text PDF

Hypoxia is a typical characteristic of most solid malignancies, which has multiple effects on malignant phenotypes and biological behaviors of tumors including epithelial-mesenchymal-transition (EMT), invasion, migration, metastasis, autophagy, stem cell maintenance, pathological angiogenesis, drug resistance, and immunosuppression. Rcentlyumoand reversing the tumor hypoxic environment via nanotechnology has emerged as a novel therapeutic approach for the treatment of malignancies. The main strategies related to nanotechnology to alleviate or ameliorate hypoxic environment are as follows: (1) Bringing external oxygen to tumor hypoxic microenvironment; (2) Generating oxygen based on nanotechnology ; (3) Regulating the structure of the tumor microenvironment; (4) Decreasing oxygen consumption in the tumor microenvironment.

View Article and Find Full Text PDF

Objective: Hepatocellular carcinoma (HCC) tumour microenvironment (TME) is highly complex with diverse cellular components organising into various functional units, cellular neighbourhoods (CNs). And we wanted to define CN of HCC while preserving the TME architecture, based on which, potential targets for novel immunotherapy could be identified.

Design: A highly multiplexed imaging mass cytometry (IMC) panel was designed to simultaneously quantify 36 biomarkers of tissues from 134 patients with HCC and 7 healthy donors to generate 562 highly multiplexed histology images at single-cell resolution.

View Article and Find Full Text PDF