Pancreatic islet transplantation is a promising treatment that could potentially reverse diabetes, but its clinical applicability is severely limited by a shortage of organ donors. Various cell loading approaches using polymeric porous microspheres (PMs) have been developed for tissue regeneration; however, PM-based multicellular artificial pancreatic islets' construction has been scarcely reported. In this study, MIN6 (a mouse insulinoma cell line) and MS1 (a mouse pancreatic islet endothelial cell line) cells were seeded into poly(lactic--glycolic acid) (PLGA) PMs via an upgraded centrifugation-based cell perfusion seeding technique invented and patented by our group.
View Article and Find Full Text PDFPancreatic islet surface engineering has been proposed as an "easy-to-adopt" approach to enhance post-transplantation islet engraftment for treatment against diabetes. Inulin is an FDA-approved dietary prebiotic with reported anti-diabetic, anti-inflammatory, anti-hypoxic and pro-angiogenic properties. We therefore assessed whether inulin would be a viable option for islet surface engineering.
View Article and Find Full Text PDF