Click reactions, which are characterized by rapid, high-yielding, and highly selective coupling of two reaction partners, are powerful tools in synthesis but are rarely reversible. Innovative strategies that reverse such couplings in a precise and on-demand manner, enabling a click-clip sequence, would greatly expand the technique's versatility. Herein, a click and clip reaction pair is demonstrated by manipulation of a sulfilimine linkage.
View Article and Find Full Text PDFPromoting the generation of triplet states is essential for developing efficient photocatalytic systems. This research presents a novel approach of host-stabilized through-space conjugation via the combination of covalent and non-covalent methods. The designed building block, 4,4'-(1,4(1,4)-dibenzene cyclohexaphane-1,4-diyl)bis(1-phenylpyridinium) chloride, features inherently stable through-space conjugation.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) can destroy tumor cells by generating singlet oxygen (O) under light irradiation, which is limited by the hypoxia of the neoplastic tissue. Chemodynamic therapy (CDT) can produce toxic hydroxyl radical (⋅OH) to eradicate tumor cells by catalytic decomposition of endogenous hydrogen peroxide (HO), the therapeutic effect of which is highly dependent on the concentration of HO. Herein, we propose a BODIPY-ferrocene conjugate with a balanced O and ⋅OH generation capacity, which can serve as a high-efficiency antitumor agent by combining PDT and CDT.
View Article and Find Full Text PDFThe reactivity of ketyl radicals and benzoyl radicals, two key intermediates of photo-induced oxidation of benzyl alcohol, can be stabilized by the host-guest interaction of the radicals with cucurbit[7]uril. As a result, the selectivity of photo-induced oxidation from benzyl alcohol to aldehyde is significantly improved by diminishing side reactions and inhibiting the generation of carboxylic acid products. This work presents a new route to modulate the reactivity of radical intermediates, enriching the chemistry of supramolecular intermediates and the toolbox of supramolecular catalysis.
View Article and Find Full Text PDFDeveloping combination chemotherapy systems with high drug loading efficiency at predetermined drug ratios to achieve a synergistic effect is important for cancer therapy. Herein, a polymeric dual-drug nanoparticle composed of a Pt(IV) prodrug derived from oxaliplatin and a mitochondria-targeting cytotoxic peptide is constructed through emulsion interfacial polymerization, which processes high drug loading efficiency and high biocompatibility. The depolymerization of polymeric dual-drug nanoparticle and the activation of Pt prodrug can be effectively triggered by the acidic tumor environment extracellularly and the high levels of glutathione intracellularly in cancer cells, respectively.
View Article and Find Full Text PDFHighly efficient recycling of carbon fiber reinforced polymer composites into monomers and fibers is a formidable challenge. Herein, we present a closed-loop recycling approach for carbon fiber reinforced polymer composites using reversible amidation chemistry, which enables the complete recovery of intact carbon fibers and pure monomers. The polymer network, synthesized by amidation between a macromonomer linear polyethyleneimine and a bifunctional maleic anhydride cross-linker, serves as a matrix for the construction of composites with exceptional mechanical properties, thermal stability and solvent resistance.
View Article and Find Full Text PDFWe report a supramolecular naphthalene diimide (NDI) radical anion with efficient NIR-II photothermal conversion for E. coli-responsive photothermal therapy. The supramolecular radical anion (NDI-2CB[7])⋅ , which is obtained from the E.
View Article and Find Full Text PDFA cucurbit[7]uril-based host-guest strategy is employed to enhance the efficiency of photolysis reactions that release caged molecules from photoremovable protecting groups. The photolysis of benzyl acetate follows a heterolytic bond cleavage mechanism, thereby leading to the formation of a contact ion pair as the key reactive intermediate. The Gibbs free energy of the contact ion pair is lowered by 3.
View Article and Find Full Text PDFUnlabelled: Nanoparticles (NP) spanning diverse materials and properties have the potential to encapsulate and to protect a wide range of therapeutic cargos to increase bioavailability, to prevent undesired degradation, and to mitigate toxicity. Fulvestrant, a selective estrogen receptor degrader, is commonly used for treating patients with estrogen receptor (ER)-positive breast cancer, but its broad and continual application is limited by poor solubility, invasive muscle administration, and drug resistance. Here, we developed an active targeting motif-modified, intravenously injectable, hydrophilic NP that encapsulates fulvestrant to facilitate its delivery via the bloodstream to tumors, improving bioavailability and systemic tolerability.
View Article and Find Full Text PDFMechanical interactions between cells and extracellular matrix (ECM) are critical for stem cell fate decision. Synthetic models of ECM, such as hydrogels, can be used to precisely manipulate the mechanical properties of the cell niche and investigate how mechanical signals regulate the cell behavior. However, it has long been a great challenge to tune solely the ECM-mimic hydrogels' mechanical signals since altering the mechanical properties of most materials is usually accompanied by chemical and topological changes.
View Article and Find Full Text PDFSupramolecular hydrogels exhibit promising potential in biological and clinical fields due to their special dynamic properties. However, most existing supramolecular hydrogels suffer from poor mechanical strength, which severely limits their applications. Here in this study, the Kinetically Interlocking Multiple-Units (KIMU) strategy was applied to the hyaluronan networks by introducing different supramolecular interaction motifs in an organized and alternative manner.
View Article and Find Full Text PDFClosed-loop chemical recycling provides a solution to the end-of-use problem of synthetic polymers. However, it remains a major challenge to design dynamic bonds, capable of effective bonding and reversible cleaving, for preparing chemically recyclable cross-linked polymers. Herein, we report a dynamic maleic acid tertiary amide bond based upon reversible amidation reaction between maleic anhydrides and secondary amines.
View Article and Find Full Text PDFTandem semi-stable complementary domains play an important role in life, while the role of these domains in the folding process of nucleic acid molecules has not been systematically studied. Here, we designed a clean model system by synthesizing sequence-defined DNA-OEG copolymers composed of ssDNA fragments with palindromic sequences and orthogonal oligo(tetraethylene glycol) (OEG) linkers. By altering the lengths of DNA units (6-12 nt) and OEG linkers (Xn = 0-4) separately, we systematically studied how stabilities of tandem complementary domains and connecting flexibilities affect the assembly topology.
View Article and Find Full Text PDFHydrogels have been widely applied to understand the fundamental functions and mechanism of a natural extracellular matrix (ECM). However, revealing the high permeability of ECM through synthetic hydrogels is still challenged by constructing analogue networks with rigid and dynamic properties. Here, in this study, taking advantage of the rigidity and dynamic binding of DNA building blocks, we have designed a model hydrogel system with structural similarity to ECM, leading to enhanced diffusion for proteins compared with a synthetic polyacrylamide (PAAm) hydrogel.
View Article and Find Full Text PDFA supramolecular organic framework-type photocatalyst, named TM-SOF, is constructed by the self-assembly of cucurbit[8]uril and a tetra-arm monomer containing four N, N'-dimethyl 2,5-bis(4-pyridinium)thiazolo[5,4-d]thiazole (MPT) moieties. Benefiting from the multivalent assembly, a photocatalytically active supramolecular MPT dimer can be stably formed in TM-SOF. In addition, TM-SOF exhibits better stability against temperature, substrate, and light irradiation.
View Article and Find Full Text PDFDeveloping high-performance and reusable adhesives from renewable feedstocks is of significance to sustainable development, yet it still remains a formidable task. Herein, castor oil, melevodopa, and iron ions are used as building blocks to construct a novel bio-based supramolecular adhesive (BSA) with outstanding adhesion performances. It is prepared through partial coordination between melevodopa functionalized castor oil and Fe ions.
View Article and Find Full Text PDFSupramolecular polymers, originating from the interplay between polymer science and supramolecular chemistry, have attracted increasing interest in the scientific and industrial communities. To date, most supramolecular polymers are constructed in homogeneous solutions. Supramolecular polymerization normally takes place spontaneously in solutions, thus creating challenges in fabricating supramolecular polymers in a controlled manner.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
June 2022
We report a cationic porphyrin 5,10,15,20-tetrakis-(4-N-methylpyridyl)-porphyrin (TMPyP) that can respond to specific bacteria, followed by adaptable photodynamic/photothermal therapy processes. TMPyP could be reduced to phlorin by facultative anaerobes with a strong reducing ability such as E. coli and S.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2022
Plant bacterial diseases are serious problems in agriculture, posing threats to global food security and the agricultural economy. Here, a degradable agricultural bactericide AMC-10 constructed using a charge-reversal surfactant, from being positively charged to negatively charged, was designed and synthesized. AMC-10 possessed high bactericidal activity toward plant pathogenic bacteria, consequently being able to inhibit the corresponding plant bacterial diseases.
View Article and Find Full Text PDFConsidering that hypoxia is closely associated with tumor proliferation, invasion, metastasis, and drug resistance, it is of great significance to overcome hypoxia in tumor treatment. Herein, we report a hypoxia-induced specific photothermal therapy (PTT) based on the photothermal agent of supramolecular perylene diimide radical anions. Hypoxic regions in various tumors display strong reductive ability, and in such environments the supramolecular complex of a perylene diimide derivative and cucurbit[7]uril could be reduced to supramolecular perylene diimide radical anions.
View Article and Find Full Text PDFSupramolecular catalysis based on host-guest interactions has aroused much attention in past decades. Among the various strategies, modulation of the reactivity of key intermediates is an effective strategy to achieve high-efficiency supramolecular catalysis. Here, we report that by utilizing the host-guest interaction of cucurbit[7]uril (CB[7]), the reactivity of anionic enolate and cationic oxonium, the intermediates of H/D exchange of the α-carbonyl hydrogen in alkali and acid conditions, respectively, could be modulated effectively.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2021
There is a challenge in supramolecular chemotherapy for constructing a system equipped with both sufficient protection and high-efficiency release of drugs. To this end, a new strategy of an activatable host-guest conjugate with self-inclusion property is proposed. Based on the binding affinity gain of intramolecular host-guest self-inclusion, an activatable host-guest conjugate was designed, bearing cucurbit[7]uril as the host, an alkyl ammonium moiety as the guest, and the redox-responsive disulfide linkage.
View Article and Find Full Text PDFA novel kinetically interlocking multiple-units (KIMU) supramolecular polymerization system with DNA double crossover backbone is designed. The rigidity of DX endows the polymer with high molecular weight and stability. The observed concentration of the formed polymers is insensitive and stable under ultralow monomer concentration owing to the KIMU interactions, in which multiple noncovalent interactions are connected by the phosphodiester bonds.
View Article and Find Full Text PDFA novel fluorescence "turn-on" enzyme-responsive supra-amphiphile is developed based on the host-guest recognition between γ-cyclodextrin (γ-CD) and an amphiphilic tetraphenylethene-sodium glycyrrhetinate conjugate (TPE-SGA). The covalent amphiphile TPE-SGA displayed strong fluorescence in aqueous solution owing to the aggregation-induced emission. Upon addition of γ-CD, the fluorescence of TPE-SGA was effectively turned off due to the host-guest recognition with γ-CD prohibiting the aggregation of TPE-SGA in aqueous solution.
View Article and Find Full Text PDFThe development of non-covalent synthetic strategy to fabricate efficient photocatalysts is of great importance in theranostic and organic materials. Herein, a fluorochrome N,N'-dimethyl 2,5-bis(4-pyridinium)thiazolo[5,4-d]thiazolediiodide (MPT) was transformed into an efficient photocatalyst through supramolecular dimerization in the cavity of cucurbit[8]uril (CB[8]). The host-enhanced charge transfer interaction within the supramolecular dimer 2MPT-CB[8] dramatically promoted intersystem crossing to produce triplet.
View Article and Find Full Text PDF