Aim: To evaluate the effect of chlorhexidine gluconate-loaded phase-transited lysozyme (CHG@PTL) coating on inhibiting bacterial adhesion and biofilm formation in an ex vivo root canal dentine model.
Methodology: The physicochemical and structural characteristics of CHG@PTL nanoparticle suspension and its coating formed on the dentine surface were analysed by thioflavin T fluorescence assay, transmission electron microscopy and confocal laser scanning microscopy (CLSM). The sustained chlorhexidine release profile of the CHG@PTL coating on the dentine surface was compared with that of the 2% CHG solution.
Aim: To explore the effects of phase-transited lysozyme (PTL) coated dentine slices on cell adhesion, migration and odontogenic differentiation of human dental pulp cells (HDPCs).
Methodology: Cell growth and cell cycle analysis were conducted to verify the biocompatibility of PTL for HDPCs. Cell adhesion, cell morphology and proliferation were explored by DiI staining, Scanning electron microscopy and MTT assay.
Introduction: Transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) are thermosensitive channels that play an important role in thermal sensation or tooth pain by regulating intracellular Ca concentration that is essential for pulp tissue repair. The aim of this study was to evaluate the role of TRPA1 and TRPV1 channels in the odontogenic differentiation of human dental pulp cells (HDPCs).
Methods: HDPCs were isolated from healthy human intact third molars and cultured in odontogenic differentiation medium.