IEEE J Biomed Health Inform
January 2025
IEEE J Biomed Health Inform
November 2023
Deep learning has demonstrated great potential for objective diagnosis of neuropsychiatric disorders based on neuroimaging data, which includes the promising resting-state functional magnetic resonance imaging (RS-fMRI). However, the insufficient sample size has long been a bottleneck for deep model training for the purpose. In this study, we proposed a Siamese network with node convolution (SNNC) for individualized predictions based on RS-fMRI data.
View Article and Find Full Text PDFQuite a few studies have been performed based on movie-watching functional connectivity (FC). As compared to its resting-state counterpart, however, there is still much to know about its abilities in individual identifications and individualized predictions. To pave the way for appropriate usage of movie-watching FC, we systemically evaluated the minimum number of time points, as well as the exact functional networks, supporting individual identifications and individualized predictions of apparent traits based on it.
View Article and Find Full Text PDFBrain Imaging Behav
February 2023
Movie fMRI has been increasingly used in investigations of human brain function. Inter-subject functional correlation (ISFC), which evaluates stimulus-dependent inter-regional synchrony between brains exposed to the same stimulus, is emerging as an influencing measure for movie fMRI data analyses. Before the wide application of ISFC analyses, it will be useful to investigate the degree to which they are similar and different across different movies.
View Article and Find Full Text PDF