Physical inactivity and sedentary behavior are associated with higher risks of age-related morbidity and mortality. However, whether they causally contribute to accelerating biological aging has not been fully elucidated. Utilizing the largest available genome-wide association study (GWAS) summary data, we implemented a comprehensive analytical framework to investigate the associations between genetically predicted moderate-to-vigorous leisure-time physical activity (MVPA), leisure screen time (LST), and four epigenetic age acceleration (EAA) measures: HannumAgeAccel, intrinsic HorvathAgeAccel, PhenoAgeAccel, and GrimAgeAccel.
View Article and Find Full Text PDFProgress has been made in generating spinal cord and trunk derivatives from neuromesodermal progenitors (NMPs). However, maintaining the self-renewal of NMPs in vitro remains a challenge. In this study, we developed a cocktail of small molecules and growth factors that induces human embryonic stem cells to produce self-renewing NMPs (srNMPs) under chemically defined conditions.
View Article and Find Full Text PDFBackground: Despite the well-established regulatory role of vitamin D in maintaining bone health, little is known about the shared genetics and causality of the association between serum 25-hydroxyvitamin D (25OHD) and bone mineral density (BMD).
Methods: Leveraging individual-level data from the UK Biobank (UKB) cohort and summary-level data from the genome-wide association studies (GWASs) conducted on European individuals for serum 25OHD (N = 417,580) and estimated heel BMD (eBMD, N = 426,824), we systematically elucidated the shared genetic architecture underlying serum 25OHD and eBMD through a comprehensive genome-wide cross-trait design.
Results: Despite a lack of global genetic correlation (rg = -0.
Reactive oxygen species (ROS)-mediated sonodynamic therapy (SDT) holds increasing potential in treating deep-seated tumor owing to the high tissue-penetration depth. However, the inevitable accumulation of sonosensitizers in normal tissues not only make it difficult to realize the in situ SDT, but also induces sonodynamic effects in normal tissues. Herein, this work reports the passivation and selective activation strategies for the sonodynamic and near-infrared (NIR) imaging performances of an intelligent antitumor theranostic platform termed Cu-IR783 nanoparticles (NPs).
View Article and Find Full Text PDFDNAJA1 is a member of type I DnaJ proteins, which is essential for spermatogenesis and male fertility. However, its expression pattern in the testes and its impact on spermatogenesis remains unclear. Our study aimed to elucidate the mechanism of action of DNAJA1.
View Article and Find Full Text PDFAiming to solve the problem of thermal decay of resin-based friction materials at high temperatures, rare-earth-lanthanum-oxide-/cerium-oxide-reinforced resin-based friction plates were prepared using a hot-pressing molding process. The effect of lanthanum/cerium oxide with different contents on the mechanical and tribological properties of the resin-based friction of materials was studied, and its mechanism was explored. The result shows that lanthanum/cerium oxide improves the mechanical and tribological properties of materials so that the coefficient of friction of the specimen is more stable on adding lanthanum/cerium oxide at 5% and 1%.
View Article and Find Full Text PDFEndothelial barrier disruption plays a key role in the pathophysiology of heat stroke (HS). Knockout of DNAJA1 (DNAJA1‑KO) is thought to be protective against HS based on a genome‑wide CRISPR‑Cas9 screen experiment. The present study aimed to illustrate the function of DNAJA1‑KO against HS in human umbilical vein endothelial cells.
View Article and Find Full Text PDFPhotothermal therapy (PTT) of nanomaterials is an emerging novel therapeutic strategy for breast cancer. However, there exists an urgent need for appropriate strategies to enhance the antitumor efficacy of PTT and minimize damage to surrounding normal tissues. Piezo1 might be a promising novel photothermal therapeutic target for breast cancer.
View Article and Find Full Text PDFThe main challenges of nanozyme-based tumor catalytic therapy (NCT) lie in the unsatisfactory catalytic activity accompanied by a complex tumor microenvironment (TME). A few nanozymes have been designed to possess both enzyme-like catalytic activities and photothermal properties; however, the previously reported nanozymes mainly utilize the inefficient and unsafe NIR-I laser, which has a low maximum permissible exposure limit and a limited penetration depth. Herein, we report for the first time an all-in-one strategy to realize mild NIR-II photothermally amplified NCT by synthesizing amorphous CoSnO nanocubes with efficient triple enzyme-like catalytic activities and photothermal conversion properties.
View Article and Find Full Text PDFAlthough low-cost nanozymes with excellent stability have demonstrated the potential to be highly beneficial for nanocatalytic therapy (NCT), their unsatisfactory catalytic activity accompanied by intricate tumor microenvironment (TME) significantly hinders the therapeutic effect of NCT. Herein, for the first time, a heterojunction (HJ)-fabricated sonoresponsive and NIR-II-photoresponsive nanozyme is reported by assembling carbon dots (CDs) onto TiCN nanosheets. The narrow bandgap and mixed valences of Ti and Ti endow TiCN with the capability to generate reactive oxygen species (ROS) when exposed to ultrasound (US), as well as the dual enzyme-like activities of peroxidase and glutathione peroxidase.
View Article and Find Full Text PDFIn this study, the toxicity of ferric oxide nanoparticles (FeO NPs) administered through gavage to Sprague Dawley (SD) rats for 94 d, consecutively and the recovery after FeO NPs withdrawal for 30 d were evaluated. The vehicle control group, low-, medium-, and high-dose groups were administered with the vehicle (0.5% sodium carboxymethyl cellulose [CMC-Na]), 125, 250, and 500 mg/kg of FeO NPs, respectively, administered every morning for 94 d.
View Article and Find Full Text PDFHepatocyte transplantation can be an effective treatment for patients with certain liver-based metabolic disorders and liver injuries. Hepatocytes are usually infused into the portal vein, from which hepatocytes migrate into the liver and integrate into the liver parenchyma. However, early cell loss and poor liver engraftment represent major hurdles to sustaining the recovery of diseased livers after transplantation.
View Article and Find Full Text PDFObjective: To evaluate the effects of yttrium nitrate on the development of the parent, offspring and third generation of Sprague-Dawley (SD) rats by using a two-generation reproductive toxicity test.
Methods: The SD rats were randomly divided into 0 mg/kg group, 10.0 mg/kg group, 30.
Background: Sigmoid colon adenocarcinoma has a high incidence among gastrointestinal tumors, and it very rarely metastasizes to the penis. The literature reports that the prognosis after penile metastasis is generally poor, with a median survival of about 9 mo. Metachronous isolated metastasis to the penis originating from sigmoid colon adenocarcinoma has not been reported so far.
View Article and Find Full Text PDFNanozymes have shown promising potential in disease treatment owing to the advantages of low-cost, facile fabrication, and high stability. However, the highly complex tumor microenvironment (TME) and inherent low catalytic activity severely restrict the clinical applications of nanozymes. Herein, a novel mild hyperthermia-enhanced nanocatalytic therapy platform based on Z-scheme heterojunction nanozymes by depositing N-doped carbon dots (CDs) onto Nb C nanosheets is constructed.
View Article and Find Full Text PDFis a famous functional food and herb. To guarantee quality of a strategy "Q-markers targeted screening" was successfully developed by sufficient extraction of compounds and the targeted screening of qualitative and quantitative markers calculated through chemometric methods based fingerprints. Accelerated solvent extraction was selected due to its prominent advantages exhibiting the maximum extraction yields and varieties of compounds and especially excellent reproducibility (RSD < 1).
View Article and Find Full Text PDF