Publications by authors named "Jiangbin Xia"

Herein, hydrothermal method was used to prepare a series of multi-color polythiophene modified carbon quantum dots. Under UV excitation, fluorescence their maximum emission wavelengths appear at 612 nm, 570 nm, and 540 nm respectively. The prepared CD-BTH and CD-BN can have specific detection of Au and Hg through fluorescence quenching effect.

View Article and Find Full Text PDF

Herein, two poly(3-aminocarbazole) derivatives containing imidazole N-type acceptor were synthesized and reported, which are named PCPI and PCBI respectively. The fluorescence spectrum shows that PCPI (Em = 498 nm) and PCBI (Em = 398 nm) both have a strong fluorescence emission. It is worth noting that PCPI has a larger stokes shift of 153 nm, which is beneficial for improving the sensitivity of the sensor and enhancing its anti-interference ability.

View Article and Find Full Text PDF

Due to the severe toxicity of triethylamine (TEA), the preparation of chemsensors with high sensitivity, low cost and visualization for TEA detection has been a research hotspot. However, based on the fluorescence turn-on detection of TEA remains rare. In this work, three two-dimensional conjugated polymers (2D CPs) were prepared by chemical oxidation polymerization.

View Article and Find Full Text PDF

As we know, excessive metal ions can even damage human health. Herein, two novel kinds of fluorescent sensing materials Poly(3-amino-carbazole) derivatives containing 1,10-phenanthroline and 8-hydroxyquinoline were synthesized and further applied to fluorescence detection for ions. The results show that Ni, Cu, and Pd have excellent quenching effects on the fluorescence of Poly[9-(1,10-phenanthroline-2-yl)-9H-carbazol-3-amine] (PPNC), the LOD for these ions reaches 5.

View Article and Find Full Text PDF

According to the assumption that the formation of C-Pd bond becomes a cyclopalladated complex (CPC), we designed and synthesized two C-N-N pincer ligands of BODIPY appended 2,2'-bipyridine derivatives (BP and BPB). It has been confirmed that the C-Pd bond does exist and plays a crucial role in "on-off" fluorescence behavior. Based on it, a coordination-induced fluorescence quenching sensor for Pd was constructed.

View Article and Find Full Text PDF

Near-infrared absorption metal complexes (NIRMCs) have been traditionally associated with the π-expanded macrocycle structure. However, macrocyclic ligands suitable for NIRMCs require a laborious synthetic route, and are a limited few. Herein, we report a kind of NIRMC based on linear large planar π-conjugated cyclopalladated dimers, which can be obtained by a facile base-induced dimerization of corresponding monomers.

View Article and Find Full Text PDF

The development of multi-responsive chemosensors has a bright application prospect in environmental monitoring and biological diagnosis. In this paper, we report two kinds of fluorescent polyaniline-like derivatives containing of carbazole or fluorene moieties with two-dimensional (2D) nano-layered structure and their applications in the detection of Al, Fe, Cu and HCl in different environments. Through the analysis of the structure and properties of these two 2D materials, we find that the prepared (Poly(9,9'-(9,9-dihexyl-9H-fluorene-2,7-diyl)bis(9H-carbazol-3-amine))) PDFCA material performs excellent sensing properties for above analytes.

View Article and Find Full Text PDF

Chemosensors play an important role in environmental protection, medical diagnosis and energy conservation. Although polyaniline and its derivatives and two-dimensional (2D) materials have been applied as chemosensors in many reports, the concept of two-dimensional (2D) polyaniline derivatives has not been achieved in chemosensors. Here, two kinds of two-dimensional (2D) polyaniline derivatives are designed and synthesized by template-free chemical polymerization.

View Article and Find Full Text PDF

Development of conjugated polymers with fluorescence sensing characteristics has received close attention from researchers in fields of environmental protection, biosensing and toxins detection on food. In this paper, novel polyaniline derivatives of poly(9-methyl-9H-carbazol-3-amine) and poly(9,9-dihexyl-9H-fluoren-2-amine) are prepared by facile chemical polymerization. Then they are characterized with NMR (Nuclear Magnetic Resonance), GPC (Gel Permeation Chromatography), XRD (X-Ray Diffraction), FT-IR (Fourier Transform Infrared spectroscopy), FL (Fluorescence spectrometry) and UV-vis (Ultraviolet-visible spectroscopy) characterizations and further applied to the fluorescence detection of different acids and amines.

View Article and Find Full Text PDF

A new nitrogen atom free polythiophene derivative bearing methoxy-ethoxy units of poly{3-[2-(2-methoxy-ethoxy)-ethoxy]-thiophene} (PM) was successfully synthesized by introducing multiple ether bonds on the thiophene unit. The special (ether bonds) coordination structure was constructed and these fluorescence characteristics of PM to metal ions detection were investigated. This polythiophene-based material displays a specific fluorescence quenching effect on Cu and Ag, and correspondingly emerges some color changes that are visible to the naked eyes.

View Article and Find Full Text PDF

TiO(2) nanoparticles with diameter <10 nm were synthesized by a facile, non-hydrothermal method at low temperature. A porous TiO(2) film electrode consisting of the obtained small TiO(2) nanoparticles and commercial TiO(2) nanoparticles without any organic binder was prepared at low temperature. The photovoltaic performance of the solar cell based on the TiO(2) electrode was investigated by the current-voltage and electrochemical impedance spectra.

View Article and Find Full Text PDF

A PEDOT-based dye-sensitized solar cell (DSC) is successfully improved by coupling photoelectrochemically deposited PEDOT layer with an Ag paste-paint on the cathode. With a 9.3 μm thick mesoscopic nanocrystalline TiO(2) film, a maximum cell performance of 3.

View Article and Find Full Text PDF

Poly(3,4-ethylenedioxythiophene) (PEDOT) is an excellent hole-conducting polymer able to replace the liquid I(-)/I3(-) redox electrolyte in dye-sensitized solar cells (DSCs). In this work we applied the in situ photoelectropolymerization technique to synthesize PEDOT and carried out a careful analysis of the effect of different doping anions on overall solar cell performance. The anions analyzed in this work are ClO4(-), CF3SO3(-), BF4(-), and TFSI(-).

View Article and Find Full Text PDF

The thin Nb(2)O(5) layer works as a remarkable blocking layer when deposited by the rf magnetron sputtering method between fluorine-doped tin oxide and a mesoporous TiO(2) layer, improving open-circuit photovoltage (V(oc)) and fill factor (FF) with power conversion efficiency over 5.5% at 1 sun irradiation of the dye-sensitized TiO(2) solar cells using ionic liquid electrolytes.

View Article and Find Full Text PDF

In dye-sensitized TiO2 solar cells, charge recombination processes at interfaces between fluorine-doped tin oxide (FTO), TiO2, dye, and electrolyte play an important role in limiting the photon-to-electron conversion efficiency. From this point of view, a high work function material such as titanium deposited by sputtering on FTO has been investigated as an effective blocking layer for preventing electron leakage from FTO without influencing electron injection. X-ray photoelectron spectroscopy analysis indicates that different species of Ti (Ti4+, Ti3+, Ti2+, and a small amount of Ti0) exist on FTO.

View Article and Find Full Text PDF

A hydrophobic and 2-thiophen-2-yl-vinyl-conjugated ruthenium complex, cis-Ru(dhtbpy)(dcbpy)(NCS)2 [dhtbpy = 4,4'-di(hexylthienylvinyl)-2,2'-bipyridyl; dcbpy = 4,4'-dicarboxy-2,2'-bipyridyl], was newly designed, synthesized and applied successfully to sensitization of nanocrystalline TiO2-based solar cells, giving a conversion efficiency of 9.5% under irradiation with AM 1.5 solar light.

View Article and Find Full Text PDF