Publications by authors named "JiangLong Yan"

Polyetheretherketone (PEEK) is considered as a promising dental implant material owing to its excellent physicochemical and mechanical properties. However, its wide range of applications is limited by its biologically inert nature. In this study, a near-infrared (NIR) light responsive bioactive coating with gold nanoparticles (AuNPs) and metronidazole adhered to the PEEK surface via dopamine polymerization.

View Article and Find Full Text PDF

Cell therapies offer great promise in the treatment of diseases and tissue regeneration, but their clinical use has many challenges including survival, optimal performance in their intended function, or localization at sites where they are needed for effective outcomes. We report here on a method to coat a biodegradable matrix of biomimetic nanofibers on single cells that could have specific functions ranging from cell signaling to targeting and helping cells survive when used for therapies. The fibers are composed of peptide amphiphile (PA) molecules that self-assemble into supramolecular nanoscale filaments.

View Article and Find Full Text PDF

In this work, we present a network-based technique for chest X-ray image classification to help the diagnosis and prognosis of patients with COVID-19. From visual inspection, we perceive that healthy and COVID-19 chest radiographic images present different levels of geometric complexity. Therefore, we apply fractal dimension and quadtree as feature extractors to characterize such differences.

View Article and Find Full Text PDF

The widespread occurrence of bacterial infections and their increased resistance to antibiotics has led to the development of antimicrobial coatings for multiple medical implants. Owing to their desirable properties, gold nanoparticles (AuNPs) have been developed as antibacterial agents. This systematic investigation sought to analyze the antibacterial effects of implant material surfaces modified with AuNPs.

View Article and Find Full Text PDF

Osteoporosis is an increasing public health problem in the worldwide and has caused socioeconomic burden. Natural products as candidates have the potential to promote bone formation and suppress bone resorption for osteoporosis treatment. Previously, syringin has showed the potent anti-osteoporosis activity, however the detailed mechanism of syringin against osteoporosis is still unclear.

View Article and Find Full Text PDF

Core-shell nanoparticles (CSNs) have numerous intriguing properties for advanced device applications, while it remains challenging to directly grow them from a solid substrate. Here, we report a simple mussel-bioinspired solid chemistry strategy for in-situ synthesis of CSNs that are substrate anchored and morphologically tunable for wide-ranging biotechnological applications. Briefly, silver titanate was hydrothermally grown on template titanium and subjected to reaction with mussel-derived dopamine.

View Article and Find Full Text PDF
Article Synopsis
  • Tissue engineering using silk/graphene oxide scaffolds modified with tannic acid (TA) and strontium (Sr) offers a new method for repairing meniscus tissue affected by inflammation after injury.
  • The study shows that this scaffold can reduce inflammatory cytokines and reactive oxygen species (ROS), promoting cell migration and increasing extracellular matrix production in vitro.
  • In a rat model, the TA/Sr coating effectively delayed osteoarthritis progression and protected cartilage, showing significant downregulation of inflammatory markers and improved tissue health.
View Article and Find Full Text PDF

To overcome the restricted degradation, poor antiacterial and osteoindctive problems of magnesium and its alloys, this study presented the spinning coating of an antimicrobial peptide (AP)-loaded silk fibroin (SF) composite onto a corrosion-resistant MgO-coated AZ31 Mg alloy via anodization (aMgO) and electrodeposition (eMgO) methods. The composite coatings not only created a smooth and hydrophilic surface, but also obviously improved the corrosion resistance according to the test of corrosion potential and current density. The colonization of E.

View Article and Find Full Text PDF

Biomedical device-associated infections (BAI) and osteosynthesis are two main complications following the orthopedic implant surgery, especially while infecting bacteria form a mature biofilm, which can protect the organisms from the host immune system and antibiotic therapy. Comparing with the single antibiotics therapeutic method, the combination of silver nanoparticles (AgNPs) and conventional antibiotics exert a high level of antibacterial activity. Nevertheless, one major issue that extremely restricts the potential application of AgNP/antiviotics is the uncontrolled release.

View Article and Find Full Text PDF

Polyetheretherketone has been widely used for bone defect repair, whereas failures may happen due to implant loosening and infection. Thus, PEEK implant with multi-function (osteogenesis, angiogenesis, and bacteria-killing) is essential to solve this problem. Herein, copper oxide microspheres (µCuO) decorated with silver nanoparticles (nAg) were constructed on porous PEEK surface via silk fibroin.

View Article and Find Full Text PDF

Considering the intrinsic poor self-healing capacity of meniscus, tissue engineering has become a new direction for the treatment of meniscus lesions. However, disturbed by mechanical stability and biocompatibility, most meniscus implants fail to relieve symptoms and prevent the development of osteoarthritis. The goal of this study was to develop a potential meniscal substitute for clinical application.

View Article and Find Full Text PDF

Vascular stent interventional therapy, as a regular and effective therapy, has been widely used to treat coronary artery diseases. However, adverse events occur frequently after stent intervention, especially restenosis and late stent thrombosis. The targeted implanting site will suffer from severe atherosclerosis, which is considered as a chronic inflammatory disease.

View Article and Find Full Text PDF

Tracheobronchial obstruction in children due to benign stenosis or tracheobronchomalacia still remains a challenging matter of concern. Currently, there is 10%-20% complication rate in clinical treatment. The non-biodegradable property of silicone stents and nickel-titanium memory alloy stents take the primary responsibility for drawbacks including stimulating local granulation tissue proliferation, displacement, and stent-related infections.

View Article and Find Full Text PDF

Bioabsorbable magnesium alloys are becoming prominent materials for cardiovascular stents, as their desirable mechanical properties and favorable biosafety. However, the rapid corrosion of magnesium alloys under physiological conditions hinders their wider application as medical implant materials. Fluoride chemical conversion treatment is an effective and simple technique to improve the corrosion resistance for magnesium alloys.

View Article and Find Full Text PDF

Various coatings have been used to slow down the corrosion rate of biomedical magnesium alloys. However, these coatings usually act only as passive barriers. It is much more desirable to endow such coatings with active, biocorrosion-responsive self-repairing capacity.

View Article and Find Full Text PDF

Self-healing coatings have attracted attention on surface modification of magnesium alloys, as it can recover the barrier ability of the coatings from corrosion attack. Nevertheless, previous works on this aspect are not suitable for biomedical magnesium alloys owing to the lack of biocompatibility. In this study, we fabricated a self-healing coating on biomedical Mg-1Ca alloy by compositing silk fibroin and KPO.

View Article and Find Full Text PDF

Biomaterials-enabled regenerative medicine in orthopedics is challenged with infective bone defects that do not heal normally. Three-dimensional (3D) scaffold biomaterials simultaneously emulating skeletal hierarchy and eliciting sustainable osteogenetic and antibacterial functionalities represent a potent solution holding increasing fascination. Here we describe a simple combinatorial strategy for constructing such scaffolds.

View Article and Find Full Text PDF

Coating bioceramics of inherent bioactivity onto biometallic implants is a straightforward yet promising solution to address poor osteointegration of the latter. One step further, it would be a nontrivial accomplishment to develop a mild, cheap, and universal route to firmly stabilizing, in principle, any ceramics onto any implant substrate, while imparting expectedly versatile biofunctional performances. Herein, we describe a triple-bioinspired burying/cross-linking interfacial coassembly strategy for enabling such ceramic coatings, which ingeniously fuses bioinspiration from sea rocks (burying assisted particle immobilization), marine mussels (universal adhesion and versatile chemical reactivity), and reef-building oysters (cross-linking rendered cohesion).

View Article and Find Full Text PDF

Magnesium and its alloys have emerged as some of the most promising biodegradable metals for temporary bone implants, but challenges remain in controlling their corrosion and biocompatibility and endowing them with bioactivity and osteogenic functionality. Herein, we presented newly developed bioactive Ca, Sr/P-containing silk fibroin films (the Ca, Sr/P silk) on top of Mg-1Ca alloy to simultaneously improve the corrosion resistance, osteocompatibility, and osteogenic activities important in maintaining mechanical integrity and stimulating bone formation, respectively. Briefly, extracellular matrix (ECM) mimicking Ca, Sr/P silk fibroin films were constructed layer upon layer on fluoridized Mg-1Ca alloy via simple spinning assembly.

View Article and Find Full Text PDF

To solve the Ti implants-associated infection and poor osseointegration problems, we have constructed the AgNPs/gentamicin (Gen)-loaded silk fibroin (SF) coating with acceptable antibacterial and osteogenic aptitude. Nevertheless, due to uncontrollably sustained drug release, this bactericidal coating encountered some tricky problems, such as local high Ag concentration, short life-span and potential cytotoxicity. In this work, a chitosan (CS) barrier layer was constructed to prebuilt the SF-based film by two means, dip-coating (DCS) and spin-coating (SCS).

View Article and Find Full Text PDF

Unlabelled: Biomedical associated infections (BAI) are difficult to treat and may even lead to amputation and death, especially after the emergence of drug-resistant bacteria. The aim of this study was to harness the potential synergistic effects of multiple bactericidal agents to endow polyetheretherketone (PEEK) with the ability of achieving full eradication of planktonic and adherent bacteria while maintaining acceptable biocompatibility. In this work, a mussel inspired, silver nanoparticles (AgNPs) incorporated silk fibroin (SF)/gentamicin sulfate (GS) coating was constructed upon porous PEEK surface.

View Article and Find Full Text PDF

To endow orthopaedic implants with satisfactory antibacterial properties, the design and development of antibiotic coating on the surface of implants is highly desired. In this work a novel and facile strategy was developed to form pH-responsive layer-by-layer (LbL) films implanted with polymeric micelles as nano-vehicles loaded with charge-weak antibiotic drugs, enabling high drug loading efficiency. Negatively charged tobramycin (Tob)-embeded heparin miscells (HET) and positively charged chitosan (CHT) were exploited as a pH-responsive LBL multilayer building block, respectively.

View Article and Find Full Text PDF

With the progressively increasing demand for orthopedic Ti implants, the balance between two primary complications restricting implant applications is needed to be solved: the lack of bone tissue integration and biomedical device-associated infections (BAI), where emergence of multiresistance bacteria make it worse. Notably, a combination of silver nanoparticles (AgNPs) and a kind of antibiotic can synergistically inhibit bacterial growth, where a low concentration of AgNPs has been confirmed to promote the proliferation and osteogenesis of osteoblasts. In this work, we built AgNPs/gentamicin (Gen)-embedded silk fibroin (SF)-based biomimetic coatings on orthopedic titanium by a facile dipping-drying circular process and with the assistance of polydopamine (PD).

View Article and Find Full Text PDF