Quantum systems, including superconducting circuits, trapped ions, quantum dots, solid-state defects, etc., have achieved considerable advancements in readout fidelity. However, the widely used threshold method disregards the importance of temporal characteristics of the signal during continuous measurements, leading to information loss.
View Article and Find Full Text PDFNumerous theories have postulated the existence of exotic spin-dependent interactions beyond the Standard Model of particle physics. Spin-based quantum sensors, which utilize the quantum properties of spins to enhance measurement precision, emerge as powerful tools for probing these exotic interactions. These sensors encompass a wide range of technologies, such as optically pumped magnetometers, atomic comagnetometers, spin masers, nuclear magnetic resonance, spin amplifiers, and nitrogen-vacancy centers.
View Article and Find Full Text PDFMolecular recognition is a fundamental function of natural systems that ensures biological activity. This is achieved through the sieving effect, host-guest interactions, or both in biological environments. Recent advancements in multifunctional proteins reveal a new dimension of functional organization that goes beyond single-function molecular recognition, emphasizing the need for artificial multifunctional materials in industrial applications.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Ergotropy is defined as the maximum amount of work that can be extracted through a unitary cyclic evolution. It plays a crucial role in assessing the work capacity of a quantum system. Recently, the significance of quantum coherence in work extraction has been theoretically identified, revealing that quantum states with more coherence possess more ergotropy compared to their dephased counterparts.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
High-pressure diamond anvil cells have been widely used to create novel states of matter. Nevertheless, the lack of universal in-situ magnetic measurement techniques at megabar pressures makes it difficult to understand the underlying physics of materials' behavior at extreme conditions, such as high-temperature superconductivity of hydrides and the formation or destruction of the local magnetic moments in magnetic systems. Here, we break through the limitations of pressure on quantum sensors by modulating the uniaxial stress along the nitrogen-vacancy axis and develop the in-situ magnetic detection technique at megabar pressures with high sensitivity ( ) and sub-microscale spatial resolution.
View Article and Find Full Text PDFCryogenic temperatures are crucial for the operation of semiconductor quantum electronic devices, yet the heating effects induced by microwave or laser signals used for quantum state manipulation can lead to significant temperature variations at the nanoscale. Therefore, probing the temperature of individual devices in working conditions and understanding the thermodynamics are paramount for designing and operating large-scale quantum computing systems. In this study, we demonstrate high-sensitivity fast thermometry in a silicon nanotransistor at cryogenic temperatures using RF reflectometry.
View Article and Find Full Text PDFWe report new experimental results on exotic spin-spin-velocity-dependent interactions between electron spins. We designed an elaborate setup that is equipped with two nitrogen-vacancy (NV) ensembles in diamonds. One of the NV ensembles serves as the spin source, while the other functions as the spin sensor.
View Article and Find Full Text PDFUltralight dark photons constitute a well-motivated candidate for dark matter. A coherent electromagnetic wave is expected to be induced by dark photons when coupled with Standard-Model photons through kinetic mixing mechanism, and should be spatially correlated within the de Broglie wavelength of dark photons. Here we report the first search for correlated dark-photon signals using a long-baseline network of 15 atomic magnetometers, which are situated in two separated meter-scale shield rooms with a distance of about 1700 km.
View Article and Find Full Text PDFThe precise measurement of the gravity of Earth plays a pivotal role in various fundamental research and application fields. Although a few gravimeters have been reported to achieve this goal, miniaturization of high-precision gravimetry remains a challenge. In this work, we have proposed and demonstrated a miniaturized gravimetry operating at room temperature based on a diamagnetic levitated micro-oscillator with a proof mass of only 215 mg.
View Article and Find Full Text PDFEfficient detection of single optical centres in solids is essential for quantum information processing, sensing and single-photon generation applications. In this work, we use radio-frequency (RF) reflectometry to electrically detect the photoionisation induced by a single Er ion in Si. The high bandwidth and sensitivity of the RF reflectometry provide sub-100-ns time resolution for the photoionisation detection.
View Article and Find Full Text PDFSepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. Effective treatment of bacterial sepsis remains challenging due to the rapid progression of infection and the systemic inflammatory response. In this study, monolayer BiO nanosheets (BiO NSs) with oxygen-rich vacancies through sonication-assisted liquid-phase exfoliation are successfully synthesized.
View Article and Find Full Text PDFQuantum systems usually feature a rich multilevel structure with promising resources for developing superior quantum technologies compared with their binary counterpart. Single-shot readout of these high-dimensional quantum systems is essential for exploiting their potential. Although there have been various high-spin systems, the single-shot readout of the overall state of high-spin systems remains a challenging issue.
View Article and Find Full Text PDFDetecting nuclear spins using single nitrogen-vacancy (NV) centers is of particular importance in nanoscale science and engineering but often suffers from the heating effect of microwave fields for spin manipulation, especially under high magnetic fields. Here, we realize an energy-efficient nanoscale nuclear-spin detection using a phase-modulation electron-nuclear double resonance scheme. The microwave field can be reduced to 1/250 of the previous requirements, and the corresponding power is over four orders lower.
View Article and Find Full Text PDFCurrent management of anesthesia-associated complications falls short in terms of both efficacy and safety. Nanomaterials with versatile properties and unique nano-bio interactions hold substantial promise as therapeutics for addressing these complications. This review conducts a thorough examination of the existing nanotherapeutics and highlights the strategies for developing prospective nanomedicines to mitigate anesthetics-related toxicity.
View Article and Find Full Text PDFA nitrogen-vacancy center based scanning magnetic microscope can be used to characterize magnetics at the nanoscale with high sensitivity. This paper reports a field-programmable-gate-array based hardware system that is designed to realize control and signal readout for fast scanning magnetic imaging with a nitrogen-vacancy center. A 10-channel 1 Msps @ 20 bit analog signal generator, a 12-channel 50 ps resolution pulse generator, a 300 Msps @ 16 bit lock-in amplifier with proportional integral derivative control function, and a 4-channel 200 Msps counter are integrated on the platform.
View Article and Find Full Text PDFThe immune checkpoint TIGIT/PVR blockade exhibits significant antitumor effects through activation of NK and CD8 T cell-mediated cytotoxicity. Immune checkpoint blockade (ICB) could induce tumor ferroptosis through IFN-γ released by immune cells, indicating the synergetic effects of ICB with ferroptosis in inhibiting tumor growth. However, the development of TIGIT/PVR inhibitors with ferroptosis-inducing effects has not been explored yet.
View Article and Find Full Text PDFThe anti-inflammatory interleukin-1 receptor associated kinase-M (IRAK-M) is a negative regulator of MyD88/IRAK-4/IRAK-1 signaling. However, IRAK-M has also been reported to activate NF-κB through the MyD88/IRAK-4/IRAK-M myddosome in a MEKK-3 dependent manner. Here we provide support that IRAK-M uses three surfaces of its Death Domain (DD) to activate NF-κB downstream of MyD88/IRAK-4/IRAK-M.
View Article and Find Full Text PDFExceptional points (EPs) are singularities in non-Hermitian systems, where k (k ≥ 2) eigenvalues and eigenstates coalesce. High-order EPs exhibit richer topological characteristics and better sensing performance than second-order EPs. Theory predicts even richer non-Hermitian topological phases for high-order EP geometries, such as lines or rings formed entirely by high-order EPs.
View Article and Find Full Text PDFThe Jarzynski equality (JE), which connects the equilibrium free energy with nonequilibrium work statistics, plays a crucial role in quantum thermodynamics. Although practical quantum systems are usually multilevel systems, most tests of the JE were executed in two-level systems. A rigorous test of the JE by directly measuring the work distribution of a physical process in a high-dimensional quantum system remains elusive.
View Article and Find Full Text PDFChronic wound healing remains challenging due to the oxidative microenvironment. Prussian blue (PB) nanoparticles exhibiting multiple antioxidant enzyme-like activities have attracted widespread attention, while their antioxidant efficacy remains unsatisfied. Herein, ultrasmall calcium-enriched Prussian blue nanoparticles (CaPB NPs) are simply constructed with high yields for the wound repair application.
View Article and Find Full Text PDFBackground: Although there are many treatments for Multiple myeloma (MM), patients with MM still unable to escape the recurrence and aggravation of the disease.
Objective: We constructed a risk model based on genes closely associated with MM prognosis to predict its prognostic value.
Methods: Gene function enrichment and signal pathway enrichment analysis, Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis, univariate and multivariate Cox regression analysis, Kaplan-Meier (KM) survival analysis and Receiver Operating Characteristic (ROC) analysis were used to identify the prognostic gene signature for MM.
Developing new therapeutic agents for cancer immunotherapy is highly demanding due to the low response ratio of PD-1/PD-L1 blockade in cancer patients. Here, we discovered that the novel immune checkpoint VISTA is highly expressed on a variety of tumor-infiltrating immune cells, especially myeloid derived suppressor cells (MDSCs) and CD8 T cells. Then, peptide C1 with binding affinity to VISTA was developed by phage displayed bio-panning technique, and its mutant peptide VS3 was obtained by molecular docking based mutation.
View Article and Find Full Text PDF