Motivation: The precise prediction of protein domains, which are the structural, functional and evolutionary units of proteins, has been a research focus in recent years. Although many methods have been presented for predicting protein domains and boundaries, the accuracy of predictions could be improved.
Results: In this study we present a novel approach, DomHR, which is an accurate predictor of protein domain boundaries based on a creative hinge region strategy.
Protein-DNA interactions are involved in many biological processes essential for gene expression and regulation. To understand the molecular mechanisms of protein-DNA recognition, it is crucial to analyze and identify DNA-binding residues of protein-DNA complexes. Here, we proposed a novel descriptor shape string and another two related features shape string PSSM and shape string pair composition to characterize DNA-binding residues.
View Article and Find Full Text PDFA novel metabolomic method based on gas chromatography/mass spectrometry (GC-MS) was applied to determine the metabolites in the serum of piglets in response to weaning and dietary L-glutamine (Gln) supplementation. Thirty-six 21-d-old piglets were randomly assigned into three groups. One group continued to suckle from the sows (suckling group), whereas the other two groups were weaned and their diets were supplemented with 1% (w/w) Gln or isonitrogenous L-alanine, respectively, representing Gln group or control group.
View Article and Find Full Text PDFIdentification of protein structural neighbors to a query is fundamental in structure and function prediction. Here we present BS-align, a systematic method to retrieve backbone string neighbors from primary sequences as templates for protein modeling. The backbone conformation of a protein is represented by the backbone string, as defined in Ramachandran space.
View Article and Find Full Text PDFMycobacterium, the most common disease-causing genus, infects billions of people and is notoriously difficult to treat. Understanding the subcellular localization of mycobacterial proteins can provide essential clues for protein function and drug discovery. In this article, we present a novel approach that focuses on local sequence information to identify localization motifs that are generated by a merging algorithm and are selected based on a binomially distributed model.
View Article and Find Full Text PDF