To understand the effects of straw return modes on soil carbon pools, we investigated total soil organic carbon (SOC), labile organic carbon fractions, and inorganic carbon (SIC) in different straw return modes at a depth of 0-40 cm under a maize-wheat cropping system in the Guanzhong Plain, Shaanxi, based on an 11-year field experiment. There were five straw return modes, ., no return of straw of both wheat and maize (CK), the retention of high wheat stubble plus the return of chopped maize straw (WH-MC), the return of both chopped wheat and maize straw (WC-MC), the retention of high wheat stubble and no return of maize straw (WH-MN), and the return of chopped wheat straw and no return of maize straw (WC-MN).
View Article and Find Full Text PDFTo investigate the changes of Zn availability and transformation in calcareous soil, orga-nic materials (maize straw, biofertilizer, fulvic acids, and chicken manure) were thoroughly mixed with the soils amended with Zn fertilizer in the nylon net bags and buried in a field. Results showed that compared with control (neither Zn nor organic materials), Zn fertilizer alone and combined addition with organic materials significantly increased soil total Zn concentration (7.2%-13.
View Article and Find Full Text PDFA 52-day incubation experiment was conducted to investigate the effects of maize straw decomposition with combined medium element (S) and microelements (Fe and Zn) application on arable soil organic carbon sequestration. During the straw decomposition, the soil microbial biomass carbon (MBC) content and CO-C mineralization rate increased with the addition of S, Fe and Zn, respectively. Also, the cumulative CO-C efflux after 52-day laboratory incubation significantly increased in the treatments with S, or Fe, or Zn addition, while there was no significant reduction of soil organic carbon content in the treatments.
View Article and Find Full Text PDFSoil stratified sampling method and potassium chemical fractionation analysis were used to investigate effects of long-term shallow tillage and straw returning on soil K contents and stratification ratios in winter wheat/summer maize rotation system in Guanzhong Plain of Northwest China. The results showed that after 13-year continuous shallow tillage and straw returning, surface accumulation and stratification effect obviously occurred for soil available K (SAK) and non-exchangeable K (NEK), which was particularly remarkable for SAK and its fractions. Serious depletion of SAK occurred in 15-30 cm soil layer, and the SAK value was lower than the critical value of soil potassium deficiency.
View Article and Find Full Text PDFA four-year (2008-2012) field experiment was conducted to investigate the effects of different straw-returning regimes on soil total organic carbon (TOC), labile organic carbon (LOC) and the ratio of LOC to TOC (LOC/TOC) as well as TOC stock (SCS) and soil carbon pool management index (CPMI) in a farmland with maize-wheat double cropping system in Guanzhong Plain area, Shaanxi Province, China. The results indicated that soil TOC and LOC contents and SCS were significantly increased when wheat or maize straw was returned to field, and the increasing extent showed the rising order as follows: double straw-returning > single straw-returning > no straw-returning. Compared to no straw returning, a significant increase of TOC and LOC contents and SCS was found in the treatment of wheat straw chopping retention combined with maize straw chopping subsoiling retention (WC-MM), and CPMI of WC-MM was significantly higher than in the other treatments in 0-20 cm soil layer.
View Article and Find Full Text PDF