J Phys Condens Matter
December 2011
The influence of the dephasing effect on the conductance distribution of disordered graphene p-n junctions is studied. Without the dephasing, the conductance distribution has a very wide range and the conductance fluctuation is large. In this case, the conductance plateaus cannot be obtained in a single sample with the fixed disorder configuration.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2010
Electronic transport in a graphene-based ferromagnetic/normal/ferromagnetic junction is investigated by means of the Landauer-Büttiker formalism and the nonequilibrium Green function technique. For the zigzag edge case, the results show that the conductance is always larger than e(2)/h for the parallel configuration of lead magnetizations, but for the antiparallel configuration the conductance becomes zero because of the band-selective rule. Therefore, a magnetoresistance (MR) plateau emerges with the value 100% when the Fermi energy is located around the Dirac point.
View Article and Find Full Text PDF