Publications by authors named "Jiang-Xiazi Lin"

The identification and characterization of spontaneous symmetry breaking is central to our understanding of strongly correlated two-dimensional materials. In this work, we utilize the angle-resolved measurements of transport non-reciprocity to investigate spontaneous symmetry breaking in twisted trilayer graphene. By analysing the angular dependence of non-reciprocity in both longitudinal and transverse channels, we are able to identify the symmetry axis associated with the underlying electronic order.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research in two-dimensional (2D) materials is advancing in areas like theory, synthesis, and device applications, highlighting their potential across various emergent systems.
  • The study emphasizes the importance of understanding defects and intercalants in 2D materials, as well as the role of machine learning in improving synthesis and sensing processes.
  • The review also discusses the optical properties, multi-dimensional application potential, and future directions for advanced 2D material heterostructures in logic and quantum devices.
View Article and Find Full Text PDF

Strong electron correlation and spin-orbit coupling (SOC) can have a profound influence on the electronic properties of materials. We examine their combined influence on a 2-dimensional electronic system at the atomic interface between magic-angle twisted bilayer graphene and a tungsten diselenide crystal. Strong electron correlation within the moiré flatband stabilizes correlated insulating states at both quarter and half filling, and SOC transforms these Mott-like insulators into ferromagnets, evidenced by robust anomalous Hall effect with hysteretic switching behavior.

View Article and Find Full Text PDF