The identification and characterization of spontaneous symmetry breaking is central to our understanding of strongly correlated two-dimensional materials. In this work, we utilize the angle-resolved measurements of transport non-reciprocity to investigate spontaneous symmetry breaking in twisted trilayer graphene. By analysing the angular dependence of non-reciprocity in both longitudinal and transverse channels, we are able to identify the symmetry axis associated with the underlying electronic order.
View Article and Find Full Text PDFStrong electron correlation and spin-orbit coupling (SOC) can have a profound influence on the electronic properties of materials. We examine their combined influence on a 2-dimensional electronic system at the atomic interface between magic-angle twisted bilayer graphene and a tungsten diselenide crystal. Strong electron correlation within the moiré flatband stabilizes correlated insulating states at both quarter and half filling, and SOC transforms these Mott-like insulators into ferromagnets, evidenced by robust anomalous Hall effect with hysteretic switching behavior.
View Article and Find Full Text PDF