The photosynthetic performance, carbon assimilation, and triacylglycerol accumulation of Isochrysis zhangjiangensis under nitrogen-deplete conditions were studied to understand the intrinsic correlations between them. The nitrogen-deplete period was divided into two stages based on the photosynthetic parameters. During the first stage, carbon assimilation was not reduced compared with that under favorable conditions.
View Article and Find Full Text PDFMicroalgae represent a potential feedstock for biofuel production. During cultivation under nitrogen-depleted conditions, carbohydrates, rather than neutral lipids, were the major carbon sink of the marine microalga Isochrysis zhangjiangensis (Haptophyta). Carbohydrates reached maximum levels of 21.
View Article and Find Full Text PDFMicroalgal starch is considered a promising feedstock for bioethanol production. The biomass and starch accumulation in the marine microalga Tetraselmis subcordiformis were characterized under different salinities in response to nitrogen repletion (+N) or depletion (-N) at high irradiance (HI) or low irradiance (LI). Under favorable nutritional conditions (HI+N), biomass accumulation was seldom affected under 20% normal salinity, though starch accumulation were somewhat reduced.
View Article and Find Full Text PDFMicroalgal starch is a potential feedstock for biofuel production. Nutrient stress is widely used to stimulate starch accumulation in microalgae. Cell growth and starch accumulation in the marine green microalga Tetraselmis subcordiformis were evaluated under extracellular phosphorus deprivation with initial cell densities (ICD) of 1.
View Article and Find Full Text PDF