Soft electronic products are being extensively investigated in diverse applications including sensors and devices, due to their superior softness, responsiveness, and biocompatibility. One-dimensional (1-D) fiber electronic devices are recognized for their lightweight, wearable, and stretchable qualities, thus emerging as critical constituents for seamless integration with the human body and attire, exhibiting great potential in wearable applications. However, wearable conductive hydrogel fibers usually face challenges in combining stretchability and excellent stability, notably in high-temperature environment.
View Article and Find Full Text PDFIn recent years, significant progress has been made in the on-chip integration of Ti:sapphire amplifiers and lasers, showing great potential in device miniaturization, cost reduction, and mass production. However, the further integration of such devices on standard CMOS platforms has been challenging due to its limits on the wafer bonding method between gain materials and substrates. Here, we present a novel, to the best of our knowledge, SiN on-chip broadband optical waveguide amplifier scheme with an ultra-wide bandwidth of 650-900 nm and a peak gain of 28 dB based on an ion-sliced Ti:sapphire platform.
View Article and Find Full Text PDFCardiac troponin I (cTnI) monitoring is of great value in the clinical diagnosis of acute myocardial infarction (AMI). In this paper, a highly sensitive electrochemical aptamer sensor using polystyrene (PS) microspheres as the electrode substrate material in combination with Prussian blue (PB) and gold nanoparticles (AuNPs) was demonstrated for the sensitive and label-free determination of cTnI. PS microspheres were synthesized by emulsion polymerization and then dropped onto the glassy carbon electrode (GCE); PB and AuNPs were electrodeposited on the electrode in corresponding electrolyte solutions step by step.
View Article and Find Full Text PDFBackground: Our previous genome‑wide association studies (GWAS) have suggested rs912304 in 14q12 as a suggestive risk variant for type 1 diabetes (T1D). However, the association between this risk region and T1D subgroups and related clinical risk features, the underlying causal functional variant(s), putative candidate gene(s), and related mechanisms are yet to be elucidated.
Methods: We assessed the association between variant rs912304 and T1D, as well as islet autoimmunity and islet function, stratified by the diagnosed age of 12.
Heterogeneous assembly of metal halide perovskites (MHPs) structures offers convenience for promoting the interfacial properties of perovskite heterojunctions, which have been widely used in the new generation of photoelectric devices. In this study, three-dimensional (3D) CsPbBr quantum dots (CPB QDs) were epitaxially grown on two-dimensional (2D) (BA)PbBr nanoplates (BPB NPs) self-assembly in a toluene mixing solution. The morphological, structural, and optical properties of the synthesized structure reveal that a highly-qualified interface and coherence were formed between the two different perovskites.
View Article and Find Full Text PDFHydrogel-based devices commonly have a high demand for material durability when subjected to prolonged or cyclic loads. To extend their service life, it is crucial to have a deep understanding of the fatigue mechanisms of hydrogels. It is well-known that double-network (DN) hydrogels are characterized by high strength and toughness and are thus recognized as a promising candidate under load-bearing conditions.
View Article and Find Full Text PDFDue to the high conversion properties, azide compounds are widely utilized in organic synthesis. For instance, azide compounds readily release nitrogen to form a new N-C bond when they function as radical acceptors for the active intermediates in the reaction. Over the past decade, strategies employing azides as radical acceptors to construct nitrogen heterocycles have been extensively developed.
View Article and Find Full Text PDFThe investigation of the fluorescence mechanism of carbon dots (CDs) has attracted significant attention, particularly the role of the oxygen-containing groups. Dual-CDs exhibiting blue and green emissions are synthesized from glucose via a simple ultrasonic treatment, and the oxidation degree of the CDs is softly modified through a slow natural oxidation approach, which is in stark contrast to that aggressively altering CDs' surface configurations through chemical oxidation methods. It is interesting to find that the intensity of the blue fluorescence gradually increases, eventually becoming the dominant emission after prolonging the oxidation periods, with the quantum yield (QY) of the CDs being enhanced from ~0.
View Article and Find Full Text PDFMXenes have been attracting much attention since their introduction due to their amazing properties such as unique structure, good hydrophilicity, metal-grade electrical conductivity, rich surface chemistry, low ionic diffusion resistance, and excellent mechanical strength. It is noteworthy that different synthesis methods have a great influence on the structure and properties of MXenes. In recent years, some modification strategies of MXenes with unique insights have been developed with the increasing research.
View Article and Find Full Text PDFThe tactile object recognition (TOR) is highly important for environmental perception of robots. The previous works usually utilize single scale convolution which cannot simultaneously extract local and global spatiotemporal features of tactile data, which leads to low accuracy in TOR task. To address above problem, this article proposes a local and global residual (LGR-18) network which is mainly consisted of multiple local and global convolution (LGC) blocks.
View Article and Find Full Text PDFBackground: Overconsumption of sodium has been identified as a key driving factor for diet-related cardiovascular diseases (CVDs). China, being a country bearing a hefty burden of CVD, has a large population with diverse cultural traditions and ethnic beliefs, which complicates the patterns of dietary sodium intake, necessitating a systematic investigation into the profile of the high sodium intake (HSI)-related burden of CVD within its subregions. This study aims to estimate the evolving patterns of HSI-induced CVD burden across China from 1990 to 2019.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2024
A scene that contains both old and instant events with a clear motion trail is visually intriguing and dynamic, which can convey a sense of change, transition, or evolution. Developing an eco-friendly delay display system offers a powerful tool for fusing old and instant events, which can be used for visualizing motion trails. Herein, we brighten triplet excitons of carbon nanodots (CNDs) and increase their emission yield by a multidimensional confinement strategy, and the CND-based delay display array is demonstrated.
View Article and Find Full Text PDFRoom-temperature phosphorescent materials, renowned for their long luminescence lifetimes, have garnered significant attention in the field of optical materials. However, the challenges posed by thermally induced quenching have significantly hindered the advancement of luminescence efficiency and stability. In this study, thermally enhanced phosphorescent carbon nanodots (CND) are developed by incorporating them into fiber matrices.
View Article and Find Full Text PDFThe essence of biomimetics in human-computer interaction (HCI) is the inspiration derived from natural systems to drive innovations in modern-day technologies. With this in mind, this paper introduces a biomimetic adaptive pure pursuit (A-PP) algorithm tailored for the four-wheel differential drive robot (FWDDR). Drawing inspiration from the intricate natural motions subjected to constraints, the FWDDR's kinematic model mirrors non-holonomic constraints found in biological entities.
View Article and Find Full Text PDFBackgrounds: Excessive intake of sodium is a crucial risk factor of gastric cancer. However, it is still unclear whether the profile of gastric cancer burden is attributable to high sodium intake in China. This study aims to evaluate the levels and trends of gastric cancer burden attributable to high sodium intake across China from 1990 to 2019.
View Article and Find Full Text PDFLicorice is a frequently applied herb with potential edible and medicinal value based on various flavonoids and triterpenes. However, studies on detailed flavonoid and triterpene metabolism and the molecular basis of their biosynthesis in licorice are very limited, especially under drought conditions. In the present study, we carried out transcriptome, proteome, and metabolome experiments.
View Article and Find Full Text PDFAltern Ther Health Med
January 2024
Objective: This study aimed to analyze the therapeutic efficacy of a combined treatment approach involving specialized head scraping (Guasha) in conjunction with Kaitianmen to manage insomnia.
Methods: We conducted a study involving 90 individuals with insomnia who received treatment at our hospital between March 2022 and March 2023. These participants were selected and randomly assigned to either a research group (n = 45) or a control group (n = 45).
With the annual increases in the morbidity and mortality rates of tumors, the use of biomarkers for early diagnosis and real-time monitoring of tumor cells is of great importance. Biomarkers used for tumor cell detection in body fluids include circulating tumor cells, nucleic acids, protein markers, and extracellular vesicles. Among them, circulating tumor cells, circulating tumor DNA, and exosomes have high potential for the prediction, diagnosis, and prognosis of tumor diseases due to the large amount of valuable information on tumor characteristics and evolution; in addition, in situ monitoring of telomerase and miRNA in living cells has been the topic of extensive research to understand tumor development in real time.
View Article and Find Full Text PDFTo minimize and control the transmission of infectious diseases, a sensitive, accurate, rapid, and robust assay strategy for application on-site screening is critical. Here, we report single-molecule RNA capture-assisted digital RT-LAMP (SCADL) for point-of-care testing of infectious diseases. Target RNA was captured and enriched by specific capture probes and oligonucleotide probes conjugated to magnetic beads, replacing laborious RNA extraction.
View Article and Find Full Text PDFThis study aims to investigate the correlations between islet function/ insulin resistance and serum lipid levels, as well as to assess whether the strength of such correlations is affected by the GCKR rs1260326 variant in healthy and T2D individuals. We performed an oral glucose tolerance test (OGTT) on 4889 middle-aged adults, including 3135 healthy and 1754 T2D individuals from the REACTION population study in the Nanjing region. We also measured their serum lipid levels and genotyped for rs1260326.
View Article and Find Full Text PDFZhongguo Dang Dai Er Ke Za Zhi
May 2023
Objectives: To summarize the clinical features of neonates infected with Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Methods: The medical data of 23 neonates with Omicron variant of SARS-CoV-2 infection admitted to the City North Campus of Urumqi First People's Hospital from October to December 2022 were retrospectively reviewed.
Results: All 23 infants had a history of exposure to confirmed caregivers with SARS-CoV-2 infection after birth, and none of them was vertically transmitted.
Micromachines (Basel)
May 2023
Loop-mediated isothermal amplification (LAMP) is a rapid and high-yield amplification technology for specific DNA or RNA molecules. In this study, we designed a digital loop-mediated isothermal amplification (digital-LAMP)-functioning microfluidic chip to achieve higher sensitivity for detection of nucleic acids. The chip could generate droplets and collect them, based on which we could perform Digital-LAMP.
View Article and Find Full Text PDF