Background/objectives: Most older adults experience cognitive and physical functioning problems; however, they require the ability to learn skills in response to age-related or social environmental changes for independent living. This study aimed to clarify the associations between age-related physical activity and performance in skill learning tasks based on cognitive function.
Methods: Fifty-eight adults participated in this study and were divided into two groups: the control group (aged under 65 years) and older adult group (aged over 65).
Postural stability is essential for performing daily activities and preventing falls, whereby suspensory strategy with knee flexion may play a role in postural control. However, the contribution of the suspensory strategy for postural control during sudden lateral perturbation remains unclear. We aimed to determine how suspensory strategy contributed to postural adjustment during sudden perturbation in the lateral direction and what knee flexion setting maximized its effect.
View Article and Find Full Text PDFBackground And Aim: The suspensory strategy, a method for controlling postural balance in the vertical direction of the center of mass (COM), is considered by the elderly as a means of balance control. The vertical COM control might alter the sensory integration and regularity of postural sway, which in turn impacts balance. However, to date, this was not confirmed.
View Article and Find Full Text PDFIt is well-known that multitasking impairs the performance of one or both of the concomitant ongoing tasks. Previous studies have mainly focused on how a secondary task can compromise visual or auditory information processing. However, despite dual tasking being critical to motor performance, the effects of dual-task performance on proprioceptive information processing have not been studied yet.
View Article and Find Full Text PDFVisuospatial working memory (VSWM) involves cortical regions along the dorsal visual pathway, which are topographically organized with respect to the visual space. However, it remains unclear how such functional organization may constrain VSWM behavior across space and time. Here, we systematically mapped VSWM performance across the 2-dimensional (2D) space in various retention intervals in human subjects using the memory-guided and visually guided saccade tasks in two experiments.
View Article and Find Full Text PDF