Publications by authors named "Jiang Jinhong"

Introduction: T cell Antigen Coupler (TAC) T cells harness all signaling subunits of endogenous T cell receptor (TCR) to trigger T-cell activation and tumor cell lysis, with minimal release of cytokines. Some of the major obstacles to cellular immunotherapy in solid tumors include inefficient cell infiltration into tumors, lack of prolonged cellular persistence, and therapy-associated toxicity.

Methods: To boost the cytotoxic potential of TAC-T cells against solid tumors, we generated a novel NECTIN-4-targeted TAC-T variant, NECTIN-4 TAC28-T, which integrated the co-stimulatory CD28 cytoplasmic region, and compared the anti-tumor activities between NECTIN-4 TAC-T cells and NECTIN-4 TAC28-T cells in vitro and vivo.

View Article and Find Full Text PDF

We have developed a biomimetic fluorescent nanoprobe (Pd-MOF) that can accurately identify phorate at a fixed wavelength for rapid, sensitive and selective detection. Pd-MOF was a nanoparticle (260.00 ± 27.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is a fatal malignancy with rising incidence and low cure rates. This study aims to investigate the effect of alkB homolog 5 (ALKBH5)-mediated N6-methyladenosine (m6A) modification on adriamycin (ADR) resistance in AML. First, the levels of ALKBH5, taurine upregulated 1 (TUG1), YTH N6-methyladenosine RNA binding protein F2 (YTHDF2), euchromatic histone lysine methyltransferase 2 (EHMT2), and SH3 domain-binding glutamate-rich protein-like (SH3BGRL) were measured.

View Article and Find Full Text PDF

Embedded 3D bioprinting techniques have emerged as a powerful method to fabricate 3D engineered constructs using low strength bioinks; however, there are challenges in simultaneously satisfying the requirements of high-cell-activity, high-cell-proportion, and low-viscosity bioinks. In particular, the printing capacity of embedded 3D bioprinting is limited as two main challenges: spreading and diffusion, especially for liquid, high-cell-activity bioinks that can facilitate high-cell-proportion. Here, a liquid-in-liquid 3D bioprinting (LL3DBP) strategy is developed, which used a liquid granular bath to prevent the spreading of liquid bioinks during 3D printing, and electrostatic interaction between the liquid bioinks and liquid granular baths is found to effectively prevent the diffusion of liquid bioinks.

View Article and Find Full Text PDF

Anisotropic microstructures resulting from a well-ordered arrangement of filamentous extracellular matrix (ECM) components or cells can be found throughout the human body, including skeletal muscle, corneal stroma, and meniscus, which play a crucial role in carrying out specialized physiological functions. At present, due to the isotropic characteristics of conventional hydrogels, the construction of freeform cell-laden anisotropic structures with high-bioactive hydrogels is still a great challenge. Here, we proposed a method for direct embedded 3D cell-printing of freeform anisotropic structure with shear-oriented bioink (GelMA/PEO).

View Article and Find Full Text PDF

Objectives: Experimental and acute exposure studies imply that manganese affects red blood cell production. Nevertheless, the association between environmental exposure and red blood cell distribution width (RDW) has yet to be explored. This research sought to assess the correlation between blood manganese levels and RDW within the general population of the United States.

View Article and Find Full Text PDF

The efficiency of foam drainage gas recovery is predominantly dictated by the performance of the foaming agent. To better understand their behavior, a novel testing apparatus was developed to simulate the foam drainage gas recovery process within the wellbore. Through the dynamic liquid-carrying performance tests of four foaming agents under uniform conditions, it was discerned that there existed significant disparities in the liquid-carrying performance and action duration.

View Article and Find Full Text PDF

Various anisotropic tissue structures exist in organisms, including muscle tissue, skin tissue, and nerve tissue. Replicating anisotropic tissue structureshas posed a significant challenge. Three-dimensional (3D) printing technology is often used to fabricate biomimetic structures due to its advantages in manufacturing principle.

View Article and Find Full Text PDF

Bone cancer pain (BCP), due to cancer bone metastasis and bone destruction, is a common symptom of tumors, including breast, prostate, and lung tumors. Patients often experience severe pain without effective treatment. Here, using a mouse model of bone cancer, we report that MOTS-c, a novel mitochondrial-derived peptide, confers remarkable protection against cancer pain and bone destruction.

View Article and Find Full Text PDF

Painful Diabetic Neuropathy (PDN) is a common diabetes complication that frequently causes severe hyperalgesia and allodynia and presents treatment challenges. Mitochondrial-derived peptide (MOTS-c), a novel mitochondrial-derived peptide, has been shown to regulate glucose metabolism, insulin sensitivity, and inflammatory responses. This study aimed to evaluate the effects of MOTS-c in streptozocin (STZ)-induced PDN model and investigate the putative underlying mechanisms.

View Article and Find Full Text PDF

The hippocampus (HPC) plays a pivotal role in fear learning and memory. Our two recent studies suggest that rapid eye movement (REM) sleep via the HPC downregulates fear memory consolidation and promotes fear extinction. However, it is not clear whether and how the dorsal and the ventral HPC regulates fear memory differently; and how the HPC in wake regulates fear memory.

View Article and Find Full Text PDF

Microglial are major players in neuroinflammation that have recently emerged as potential therapeutic targets for neuropathic pain. Glucose metabolic programming has been linked to differential activation state and function in microglia. Tumor necrosis factor α-induced protein 8-like-2 (TNFAIP8L2) is an important component in regulating the anti-inflammatory response.

View Article and Find Full Text PDF

Electrolytic aqueous zinc-manganese (Zn-Mn) batteries have the advantage of high discharge voltage and high capacity due to two-electron reactions. However, the pitfall of electrolytic Zn-Mn batteries is the sluggish deposition reaction kinetics of manganese oxide during the charge process and short cycle life. We show that, incorporating ZnO electrolyte additive can form a neutral and highly viscous gel-like electrolyte and render a new form of electrolytic Zn-Mn batteries with significantly improved charging capabilities.

View Article and Find Full Text PDF

The potential of 3D bioprinting in tissue engineering and regenerative medicine is enormous, but its implementation is hindered by the reliance on high-strength materials, which restricts the use of low-viscosity, biocompatible materials. Therefore, a major challenge for incorporating 3D bioprinting into tissue engineering is to develop a novel bioprinting platform that can reversibly provide high biological activity materials with a structural support. This study presents a room temperature printing system based on GelMA combined with carrageenan to address this challenge.

View Article and Find Full Text PDF

Our previous study reported the multifunctional agonist for opioid and neuropeptide FF receptors DN-9, along with its cyclic peptide analogues c[-Cys, Cys]-DN-9 and c[-Lys, Asp]-DN-9. These analogues demonstrated potent antinociceptive effects with reduced opioid-related side effects. To develop more stable and effective analgesics, we designed, synthesized, and evaluated seven hydrocarbon-stapled cyclic peptides based on DN-9.

View Article and Find Full Text PDF

Background: Inflammatory pain is caused by damaged tissue or noxious stimuli, accompanied by the release of inflammatory mediators that often leads to severe hyperalgesia and allodynia with limited therapy options. Recently, a novel mitochondrial-derived peptide (named MOTS-c) was reported to regulate obesity, metabolic homeostasis and inflammatory response. The aim of this study was to investigate the effects of MOTS-c and its related regulatory mechanisms involved in inflammatory pain.

View Article and Find Full Text PDF

Some progress has been made in immunotherapy with chimeric antigen receptor (CAR)-T cells targeting NKG2D-NKG2DL with the purpose of eradicating solid tumors. Non-small cell lung cancer (NSCLC) has been shown to express NKG2DL. This study hence evaluated the therapeutic effect of NKG2D CAR-T cells on NSCLC.

View Article and Find Full Text PDF

Skeletal muscle disease severity can often progress asymmetrically across muscle groups and heterogeneously within tissues. An example is Duchenne Muscular Dystrophy (DMD) in which lack of dystrophin results in devastating skeletal muscle wasting in some muscles whereas others are spared or undergo hypertrophy. An efficient, non-invasive approach to identify sites of asymmetry and degenerative lesions could enable better patient monitoring and therapeutic targeting of disease.

View Article and Find Full Text PDF

Chronic morphine tolerance is a repulsive barrier to the clinical treatment of pain. Whereas the underlying molecular mechanisms of morphine tolerance remain unknown. Here, we proposed that tumor necrosis factor-α-induced protein 8-like 2 (TIPE2) is an essential control point regarding the progression of chronic morphine antinociceptive tolerance.

View Article and Find Full Text PDF

MOTS-c, a recently discovered mitochondrial-derived peptide, plays an important role in many physiological and pathological functions adenosine monophosphate-activated protein kinase (AMPK) activation. Numerous studies have demonstrated that AMPK is an emerging target for the modulation of neuropathic pain. Meanwhile, microglia-activation-evoked neuroinflammation is known to contribute to the development and progression of neuropathic pain.

View Article and Find Full Text PDF

Efficient management of disguised toxic pollutants (DTPs), which can undergo microbial degradation and convert into more toxic substances, necessitates the collaboration of diverse microbial populations in wastewater treatment plants. However, the identification of key bacterial degraders capable of controlling the toxicity risks of DTPs through division of labor mechanisms in activated sludge microbiomes has received limited attention. In this study, we investigated the key degraders capable of controlling the risk of estrogenicity associated with nonylphenol ethoxylate (NPEO), a representative DTP, in textile activated sludge microbiomes.

View Article and Find Full Text PDF

Background/purpose: It has been demonstrated that gut microbes are closely associated with the pathogenesis of lymphoma, but the gut microbe landscape and its association with immune cells in diffuse large B-cell lymphoma (DLBCL) remain largely unknown. In this study, we explored the associations between gut microbiota, clinical features and peripheral blood immune cell subtypes in DLBCL.

Method: A total of 87 newly diagnosed DLBCL adults were enrolled in this study.

View Article and Find Full Text PDF

We have developed tailor-designed mesoporous silica nanoparticles (MSNPs) specifically for delivering mRNA. Our unique assembly protocol involves premixing mRNA with a cationic polymer and then electrostatically binding it to the MSNP surface. Since the key physicochemical parameters of MSNPs could influence the biological outcome, we also investigated the roles of size, porosity, surface topology, and aspect ratio on the mRNA delivery.

View Article and Find Full Text PDF

A functional liquid-infused catheter surface strategy has recently attracted increasing attention for blood transport with the remarkable antibiofouling performance. Nevertheless, constructing porous structure inside a catheter with effective functional liquid-locking ability remains extremely challenging. Herein, the central cylinder mold and sodium chloride particle templates technique was used to create a PDMS sponge-based catheter that stores a stable functional liquid.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) is a chronic and relapsing inflammatory disorder of the gastrointestinal tract (GI). Currently, the treatment options for IBD are limited. It has been reported that a novel bioactive mitochondrial-derived peptide (MOTS-c) encoded in the mitochondrial 12S rRNA, suppresses inflammatory response by enhancing the phagocytosis of macrophages.

View Article and Find Full Text PDF