Publications by authors named "Jiang Cheng Shen"

Mutations characterize diverse human cancers; there is a positive correlation between elevated mutation frequency and tumor progression. One exception is acute myeloid leukemia (AML), which has few clonal single nucleotide mutations. We used highly sensitive and accurate Duplex Sequencing (DS) to show now that AML, in addition, has an extensive repertoire of variants with low allele frequencies, < 1%, which is below the accurate detection limit of most other sequencing methodologies.

View Article and Find Full Text PDF

The super-enhancers (SEs) of lineage-specific genes in B cells are off-target sites of somatic hypermutation. However, the inability to detect sufficient numbers of mutations in normal human B cells has precluded the generation of a high-resolution mutational landscape of SEs. Here we captured and sequenced 12 B cell SEs at single-nucleotide resolution from 10 healthy individuals across diverse ethnicities.

View Article and Find Full Text PDF

Duplex Sequencing (DS) is a next-generation sequencing methodology capable of detecting a single mutation among >1 × 10(7) wild-type nucleotides, thereby enabling the study of heterogeneous populations and very-low-frequency genetic alterations. DS can be applied to any double-stranded DNA sample, but it is ideal for small genomic regions of <1 Mb in size. The method relies on the ligation of sequencing adapters harboring random yet complementary double-stranded nucleotide sequences to the sample DNA of interest.

View Article and Find Full Text PDF

Translesion (TLS) DNA polymerases are specialized, error-prone enzymes that synthesize DNA across bulky, replication-stalling DNA adducts. In so doing, they facilitate the progression of DNA synthesis and promote cell proliferation. To potentiate the effect of cancer chemotherapeutic regimens, we sought to identify inhibitors of TLS DNA polymerases.

View Article and Find Full Text PDF

Nucleotide excision repair (NER) excises bulky DNA lesions induced by mutagens and carcinogens. The repair process includes recognition of DNA damage, excision of a short patch of nucleotides containing the damaged base, re-synthesis of a new DNA strand and ligation of the nicks to restore the sequence integrity. Mutation or aberrant transcription of NER genes reduces repair efficiency and results in the accumulation of mutations that is associated with the development of cancer.

View Article and Find Full Text PDF

DNA Polymerase δ (Pol δ) and the Werner syndrome protein, WRN, are involved in maintaining cellular genomic stability. Pol δ synthesizes the lagging strand during replication of genomic DNA and also functions in the synthesis steps of DNA repair and recombination. WRN is a member of the RecQ helicase family, loss of which results in the premature aging and cancer-prone disorder, Werner syndrome.

View Article and Find Full Text PDF

We identified a novel inhibitor of growth family member 2 (ING2) isoform, ING2b, which shares exon 2 with ING2a, but lacks the N-terminal p53 binding region. Contrary to ING2a, ING2b's promoter has no p53 binding sites. Consistently, activation of p53 led to suppression of ING2a, leaving ING2b unaffected.

View Article and Find Full Text PDF

Inhibitor of growth 4 (ING4) is a candidate tumor suppressor that plays a major role in gene regulation, cell cycle control, apoptosis, and angiogenesis. ING4 expression is down-regulated in glioblastoma cells and head and neck squamous cell carcinoma. Here, we identified liprin alpha1/PPFIA1, a cytoplasmic protein necessary for focal adhesion formation and axon guidance, as a novel interacting protein with ING4.

View Article and Find Full Text PDF

The ING4 gene is a candidate tumor suppressor gene that functions in cell proliferation, contact inhibition, and angiogenesis. We identified three novel splice variants of ING4 with differing activities in controlling cell proliferation, cell spreading, and cell migration. ING4_v1 (the longest splice variant), originally identified as ING4, encodes an intact nuclear localization signal (NLS), whereas the other three splice variants (ING4_v2, ING4_v3, and ING4_v4) lack the full NLS, resulting in increased cytoplasmic localization of these proteins.

View Article and Find Full Text PDF

ING2 is a candidate tumor suppressor gene that can activate p53 by enhancing its acetylation. Here, we demonstrate that ING2 is also involved in p53-mediated replicative senescence. ING2 protein expression increased in late-passage human primary cells, and it colocalizes with serine 15-phosphorylated p53.

View Article and Find Full Text PDF

RECQ4 is a member of the RecQ helicase family, which has been implicated in the regulation of DNA replication, recombination and repair. p53 modulates the functions of RecQ helicases including BLM and WRN. In this study, we demonstrate that p53 can regulate the transcription of RECQ4.

View Article and Find Full Text PDF

Werner syndrome (WS) is a recessive inherited human disease characterized by the early onset of aging. The gene mutated in WS encodes a DNA helicase that unwinds the double helical structure of DNA in the 3'-->5' direction as well as a 3'-->5' exonuclease. Our previous studies indicated that the activity of Werner syndrome helicase (WRN) could be stimulated by human replication protein A (hRPA), a heterotrimeric single-stranded DNA binding protein.

View Article and Find Full Text PDF

Recent crystallographic studies reveal loops in human AP endonuclease 1 (APE1) that interact with the major and minor grooves of DNA containing apurinic/apyrimidinic (AP) sites. These loops are postulated to stabilize the DNA helix and the flipped out AP residue. The loop alpha8 interacts with the major groove on the 3' side of the AP site.

View Article and Find Full Text PDF

BLM, WRN, and p53 are involved in the homologous DNA recombination pathway. The DNA structure-specific helicases, BLM and WRN, unwind Holliday junctions (HJ), an activity that could suppress inappropriate homologous recombination during DNA replication. Here, we show that purified, recombinant p53 binds to BLM and WRN helicases and attenuates their ability to unwind synthetic HJ in vitro.

View Article and Find Full Text PDF