Publications by authors named "Jianfeng Xi"

Article Synopsis
  • * The addition of ZnO NPs improved the membrane's roughness and created nanochannels, resulting in an impressive water permeance of 5439.7 L·m·h·bar and effective rejection of particles larger than 20 nm and macromolecules over 100 kDa.
  • * The membrane's combination of superoleophobicity and photocatalytic self-cleaning capabilities addressed fouling issues, thus providing a promising method for treating organic wastewater with high filtration efficiency and performance.
View Article and Find Full Text PDF

Flexible surface-enhanced Raman scattering (SERS) substrates that provide simple sampling are helpful for the on-site detection of explosive contamination, pesticide residues on food surfaces, and water pollution in public spaces. Using superhydrophobic nanocellulose-based film as the support, 2D flexible SERS substrates that integrated sampling, enrichment, and detection were successfully fabricated via the solvent-induced evaporation method. This approach enabled the co-loading of two plasmonic nanoparticles with different sizes and shapes.

View Article and Find Full Text PDF

The antibiotic tetracycline (TC) significantly pollutes water bodies, adversely impacting ecosystems and human health. In this work, a bifunctional platform for simultaneous detection and removal of TC was successfully constructed by in-situ growth of Zr-MOF in BC microspheres. The in-situ growth ensured the stability, while the design of the aerogel microspheres improved the processability, convenience, and recyclability.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have developed a smart cellulose-based Janus fabric that enhances personal moisture and thermal regulation, aiming to improve comfort in varying environments.
  • The fabric features a unique design with temperature-stimulated channels that allow for directional liquid movement and can adjust the transport time as the temperature changes.
  • Additionally, it provides UV shielding and antibacterial properties through the incorporation of graphitic carbon nitride, making it a versatile solution for temperature and comfort management.
View Article and Find Full Text PDF

The widespread use of synthetic dyes has serious implications for both the environment and human health. Therefore, there is an urgent need for the development of novel, high-efficiency adsorbents for these dyes. In this study, a Zirconium-based metal-organic framework (MOF) with controllable morphology was in-situ grown on bacterial nanocellulose (BC) via a solvothermal method.

View Article and Find Full Text PDF

Elastic carbon aerogels have promising applications in the field of wearable sensors. Herein, a new strategy for preparing carbon aerogels with excellent compressive strength and strain, shape recovery, and fatigue resistance was proposed based on the structure design and carbonization optimization of nanocellulose-based precursor aerogels. By the combination of directional freezing and zinc ion cross-linking, bacterial cellulose (BC)/alginate (SA) composite aerogels with high elasticity and compressive strength were first achieved.

View Article and Find Full Text PDF

Smart gating membranes have drawn much attention due to the controllable pore structure. Herein, a smart gating membrane with dual responsiveness was prepared from bacteria cellulose (BC) grafted with pH- and temperature-responsive polymers. By external stimulation, the average pore size of the membrane can be controlled from 33.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers focused on enhancing the mechanical strength and frost-resistance of hydrogels developed a new organohydrogel using bacterial nanocellulose and polyvinyl alcohol through a unique freezing-thawing method.
  • The resulting organohydrogel exhibited impressive mechanical properties, including a tensile strength of 2,974 kPa and stretchability of 277% at room temperature, along with high light transmittance.
  • The use of a DMF-water solvent system allowed the material to maintain notable strength (508 kPa) and flexibility (190%) even at extremely low temperatures (-70 °C), making it suitable for demanding applications.
View Article and Find Full Text PDF

Elongated nanoparticles show distinct advantages over spherical nanoparticles in bioimaging because of surface area-to-volume, rate of clearance from the body and elimination mechanism. In this work, we investigated the fluorescence emission properties of the hybrid system by decorating silver sulfide quantum dots (AgS QDs) in situ on the surface of cellulose nanocrystal (CNC) with unique rod shape, modifiability and biocompatibility. This water-dispersible fluorescent probe has both absorption and fluorescence in near-infrared (NIR) region.

View Article and Find Full Text PDF

Elastic and hydrophobic aerogels have received a lot of attention in dealing with the increasing oil pollution due to their recyclable properties. Herein, we present an ultralight and superelastic aerogel with highly oriented polygon structure based on chitin nanofibril (ChNF) and chitosan (CS) by directional freezing. The chemical cross-linking enables good mechanical strength at low aerogel density.

View Article and Find Full Text PDF

A smart gating membrane based on thermal-sensitive poly (N-isopropyl acrylamide) (PNIPAM)-grafted nanocellulose and carbon nanotube (CNT) was prepared. The presence of PNIPAM shell on cellulose nanofibrils (CNFs) endow the composite membrane with thermal responsiveness. By external stimulation, an increase temperature from 10 °C to 70 °C allows the average pore size of the membrane to be controlled from 28 nm to 110 nm, as well as the water permeance from 440 L·m·h·bar to 1088 L·m·h·bar.

View Article and Find Full Text PDF

The discovery and study of skyrmion materials play an important role in basic frontier physics research and future information technology. The database of 196 materials, including 64 skyrmions, was established and predicted based on machine learning. A variety of intrinsic features are classified to optimize the model, and more than a dozen methods had been used to estimate the existence of skyrmion in magnetic materials, such as support vector machines, -nearest neighbor, and ensembles of trees.

View Article and Find Full Text PDF

Taking truck drivers' braking patterns as the research objects, this study used a large amount of truck running data. A recognition method of truck drivers' braking patterns was proposed to determine the distribution of braking patterns during the operation of trucks. First, the segmented data of braking behaviors were collected in order to extract 25 characteristic parameters.

View Article and Find Full Text PDF

Surface-enhanced Raman scattering spectroscopy (SERS) is a highly-sensitive technology to detect trace target analytes. Herein, a series of flexible SERS substrate for the detection of malachite green (MG) bactericide were developed via in situ photochemical synthesis of silver nanoparticles (AgNPs) based on two dimentional (2D) nanocellulose film without additional reducing agent. For the first time, silver nanocubes (AgNCs) with sharp edges and corners, which are conductive to the formation of hot spots, were successfully prepared and uniformly loaded on the nanocellulose film by controlling the reaction conditions.

View Article and Find Full Text PDF

The rapid and efficient treatment of complex wastewater remains challenging. Herein, green paper-based materials with high wet strength, good oil-water separation property and high heavy metal ion adsorption capacity were prepared via a facile, cost-effective process. The introduction of amphoteric functional groups not only met the requirements for heavy metal ion adsorption, but also maintained the stable underwater superoleophobic properties of materials a wide pH range.

View Article and Find Full Text PDF

Nanocellulose holds considerable promise as an effective surface-enhanced Raman scattering (SERS) substrate for sensitive detection of trace targets. Flexible and high-sensitivity two-dimensional (2D) SERS substrates based on nanocrystalline cellulose (CNC) film were successfully developed via self assembly of two plasma nanoparticles: gold nanoflowers (AuNFs) and silver-coated gold nanocubes (Au@AgNCs). The loading process allows the precise control of nanoparticle distribution density and uniformity on CNC film, which are closely related to the plasma coupling effect between particles.

View Article and Find Full Text PDF

Charge carrier transport in the active layer and charge extraction at the electrode have significant impact on the performance of solar cells. In this study, the effect of active layer thickness and thermal-annealing treatment on the charge transport and extraction performance of PTB7:PCBM organic solar cells was studied comprehensively. Thin films of active layer couldn't utilize enough sunlight, while thick films could bring about large bulk resistance and deteriorate carrier transport.

View Article and Find Full Text PDF