The electrolysis of water for hydrogen production is currently receiving significant attention due to its advantageous features such as non-toxicity, safety, and environmental friendliness. This is especially crucial considering the urgent need for clean energy. However, the current method of electrolyzing water to produce hydrogen largely relies on expensive metal catalysts, significantly increasing the costs associated with its development.
View Article and Find Full Text PDFThe aqueous instability of halide perovskite seriously hinders its direct application in water as a potential photocatalyst. Here, we prepared a new type of polyvinylpyrrolidone (PVP) passivated δ-CsPbI (δ-CsPbI@PVP) microcrystal by a facile method. This material can be uniformly dispersed in water and stably maintain its crystal structure for a long time, breaking through the bottleneck of halide perovskite photocatalysis in water.
View Article and Find Full Text PDFWe explored the role and mechanism of circular RNAcircNRD1 in gastric cancer (GC) progression, aiming to identify new bio-markers for the treatment and prognosis of GC patients. The RNA expression was examined by reverse transcription-quantitative polymerase chain reaction. Cell proliferation, migration and invasion were analyzed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay, scratch assay and transwell assay.
View Article and Find Full Text PDFInorganic halide perovskite CsPbI is highly promising in the photocatalytic field for its strong absorption of UV and visible light. Among the crystal phases of CsPbI, the δ-phase as the most aqueous stability; however, directly using it in water is still not applicable, thus limiting its dye photodegradation applications in aqueous solutions. Via adopting nitrogen-doped graphene quantum dots (NGQDs) as surfactants to prepare δ-phase CsPbI nanocrystals, we obtained a water-stable material, NGQDs-CsPbI.
View Article and Find Full Text PDFBackground: Breast carcinoma (BRCA) is one of the most common, fatal, and aggressive cancers, with increasing morbidity that has a major impact on human health. PIK3CD appears to have important roles in the beginning and advancement of various forms of human cancer, according to mounting data. However,the particular role and mechanism of PIK3CD in BRCA remains not fully identified.
View Article and Find Full Text PDFComput Biol Med
November 2023
Electroencephalogram (EEG) signal contains important information about abnormal brain activity, which has become an important basis for epilepsy diagnosis. Recently, epilepsy EEG signal classification methods mainly extract features from the perspective of a single domain, which cannot effectively utilize the spatial domain information in EEG signals. The redundant information in EEG signals will affect the learning features with the increase of convolution layer and multi-domain features, resulting in inefficient learning and a lack of distinguishing features.
View Article and Find Full Text PDFThe exploration of low-cost, high-performance adsorbents is a popular research issue. In this work, a straightforward method that combined hydrothermal with tube firing was used to produce Osmanthus fragrans biomass charcoal (OBC) from low-cost osmanthus for dye adsorption in water. The study examined the parameters of starting concentration, pH, and duration, which impacted the process of adsorption of different dyes by OBC.
View Article and Find Full Text PDFHydrogel materials show promise for diverse applications, particular as biocompatible materials due to their high water content. Despite advances in hydrogel technology in recent years, their application is often severely limited by inadequate mechanical properties and time-consuming fabrication processes. Here we report a rapid hydrogel preparation strategy that achieves the simultaneous photo-crosslinking and establishment of biomimetic soft-hard material interface microstructures.
View Article and Find Full Text PDFAlthough additives are widely used in aqueous electrolytes to inhibit the formation of dendrites and hydrogen evolution reactions on Zn anodes, there is a lack of rational design principles and systematic mechanistic studies on how to select a suitable additive to regulate reversible Zn plating/stripping chemistry. Here, using saccharides as the representatives, we reveal that the electrostatic polarity of non-sacrificial additives is a critical descriptor for their ability to stabilize Zn anodes. Non-sacrificial additives are found to continuously modulate the solvation structure of Zn ions and form a molecular adsorption layer (MAL) for uniform Zn deposition, avoiding the thick solid electrolyte interphase layer due to the decomposition of sacrificial additives.
View Article and Find Full Text PDFPhotocatalysis holds great promise for addressing water pollution caused by organic dyes, and the development of AgO/FeO aims to overcome the challenges of slow degradation efficiency and difficult recovery of photocatalysts. In this study, we present a novel, environmentally friendly AgO/FeO magnetic nanocomposite synthesized via a simple coprecipitation method, which not only constructs a type II heterojunction but also successfully couples photocatalysis and Fenton reaction, enhancing the broad-spectrum response and efficiency. The AgO/FeO (10%) nanocomposite demonstrates exceptional degradation performance toward organic dyes, achieving 99.
View Article and Find Full Text PDFIn this study, sugarcane bagasse (SCB) was treated with sodium hydroxide and bleached to separate the non-cellulose components to obtain cellulose (CE) fibres. Cross-linked cellulose-poly(sodium acrylic acid) hydrogel (CE-PAANa) was successfully synthesised via simple free-radical graft-polymerisation to remove heavy metal ions. The structure and morphology of the hydrogel display an open interconnected porous structure on the surface of the hydrogel.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
June 2023
Microbial-induced carbonate precipitation (MICP) is being investigated to repair concrete cracks because of its good durability and compatibility with cementitious matrix. However, during the in-situ application, the repairing often lasts weeks, even months. And the strength regain is quite low.
View Article and Find Full Text PDFIn this paper, a novel phosphorus-doped sulfur quantum dots (P-SQDs) material was prepared using a simple hydrothermal method. P-SQDs have a narrow particle size distribution as well as an excellent electron transfer rate and optical properties. Compositing P-SQDs with graphitic carbon nitride (g-CN) can be used for photocatalytic degradation of organic dyes under visible light.
View Article and Find Full Text PDFMethyl orange dye (MO) is one of the azo dyes, which is not only difficult to degrade but also hazardous to human health, therefore, it is necessary to develop an efficient photocatalyst to degrade MO. In this paper, a facile and low-cost elemental doping method was used for the surface modification of TiC MXene, i.e.
View Article and Find Full Text PDFPt(II) complexes are promising phosphorescent materials for organic light-emitting diode (OLED) applications in the fields of display, lighting, healthcare, aerospace, and so on. A series of novel biphenyl ()-based tetradentate 6/5/6 Pt(II) emitters using oxygen or carbon as a linking atom was designed and developed. The intermolecular interactions in crystal packing, electrochemical, and photophysical properties of the -based Pt(II) emitters and also their excited-state properties were systematically studied, which could be effectively regulated by ligand modification through linking group control; however, their emission spectra nearly showed no change.
View Article and Find Full Text PDFHigh-temperature components in power plants may fail due to creep and fatigue. Creep damage is usually accompanied by the nucleation, growth, and coalescence of grain boundary cavities, while fatigue damage is caused by excessive accumulated plastic deformation due to the local stress concentration. This paper proposes a multiscale numerical framework combining the crystal plastic frame with the meso-damage mechanisms.
View Article and Find Full Text PDFAppl Immunohistochem Mol Morphol
March 2022
The human aspartyl β-hydroxylase (ASPH) is overexpressed in tumor tissues. Bronchoalveolar lavage (BAL) is a diagnostic procedure for infections and malignancies. The aim of this study was to investigate whether tumor exosomes carrying ASPH gene marker were present in bronchoalveolar fluid of patients with non-small cell lung cancer (NSCLC).
View Article and Find Full Text PDFHigh-photoluminescence (PL) graphene quantum dots (GQDs) were synthesized by a simple one-pot hydrothermal process, then separated by dialysis bags of different molecular weights. Four separated GQDs of varying sizes were obtained and displayed different PL intensities. With the decreasing size of separated GQDs, the intensity of the emission peak becomes much stronger.
View Article and Find Full Text PDFSimultaneous nitrification and denitrification under low dissolved oxygen conditions is an energy-saving modification of the activated sludge process to achieve efficient nitrogen removal. Geographically distinct full-scale treatment plants are excellent platforms to address the links of microbial community with operating parameters. Mixed liquor samples were collected from a sequencing batch reactor plant, oxidation ditch plant, and step-feed activated sludge plant.
View Article and Find Full Text PDFMol Genet Genomic Med
April 2020
Background: Long noncoding RNAs (lncRNA) are important in the growth and metastasis of colon cancer. The objective of this study was to describe the potential role of lncRNA NEAT1 in the progression of colon cancer.
Methods: Quantitative real-time polymerase chain reaction was used for detecting NEAT1, miR-185-5p, and IGF2 in colon cancer cells and tissues.
Wearable supercapacitors (SCs) are gaining prominence as portable energy storage devices. To develop high-performance wearable SCs, the significant relationship among material, structure, and performance inspired us with a delicate design of the highly wearable embroidered supercapacitors made from the conductive fibers composited. By rendering the conductive interdigitally patterned embroidery as both the current collector and skeleton for the SCs, the novel pseudocapacitive material cobalt phosphides were then successfully electrodeposited, forming the first flexible and wearable in-plane embroidery SCs.
View Article and Find Full Text PDFHigh-performance wearable supercapactors (SCs) are gaining prominence as portable energy storage devices. To further enhance both energy and power density, the significant relationship between structure and performance inspires a delicate design of 3D patternable supercapacitors with a hierarchical architecture of porous conductive fibers composited with pseudocapacitive materials. In this work, the polypyrrole nanowires arrays decorated 3D graphite felt fiber assembly is initially fabricated as the conductive scaffold, followed by the distribution of the highly conductive and pseudocapacitive NiCoSe nanoparticles.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2019
A fiber material is composed of a group of flexible fibers that are assembled in a certain dimensionality. With its good flexibility, high porosity, and large surface area, it demonstrates a great potential in the development of flexible and wearable electronics. In this work, a kind of nickel/active material-coated flexible fiber (NMF) electrodes, such as Ni/MnO/reduced graphene oxide (rGO) NMF electrodes, Ni/carbon nanotube (CNT) NMF electrodes, and Ni/G NMF electrodes, is developed by a new general method.
View Article and Find Full Text PDFJ Colloid Interface Sci
November 2018
Sulfur-doped graphene quantum dots (S-GQDs) were synthesized by two facile hydrothermal technologies. The photoluminescence (PL) properties of the GQDs and S-GQDs samples were mainly investigated. Through regulating the content of S powders in S-GQDs synthesizing process, the optimal S-GQDs have a high S/C atomic ratio of 19.
View Article and Find Full Text PDF