Input of root litter can alter soil organic carbon (SOC) dynamics via causing priming effect (PE) on native SOC decomposition and forming new SOC. However, it is unknown how functional type mediates the root litter-driven PE and new C formation as well as their response to warming, which are of pivotal for soil C budget. We mixed litter segments of absorptive roots and transport roots from a Chinese fir (Cunninghamia lanceolata) plantation into isotopically distinct soil and incubated at 19°C (local mean annual temperature) and 23°C (warming by 4°C) for 210 days.
View Article and Find Full Text PDFGlobal warming can significantly impact soil CH uptake in subtropical forests due to changes in soil moisture, temperature sensitivity of methane-oxidizing bacteria (MOB), and shifts in microbial communities. However, the specific effects of climate warming and the underlying mechanisms on soil CH uptake at different soil depths remain poorly understood. To address this knowledge gap, we conducted a soil warming experiment (+4 °C) in a natural forest.
View Article and Find Full Text PDFBackground: P16 is a surrogate signature compensating for the specificity and/or sensitivity deficiencies of the human papillomavirus (HPV) DNA and Papanicolaou smear (Pap) co-test for detecting high-grade cervical squamous intraepithelial lesions or worse (HSIL+). However, traditional p16INK4A immunostaining is labour intensive and skill demanding, and subjective biases cannot be avoided. Herein, we created a high-throughput, quantitative diagnostic device, p16INK4A flow cytometry (FCM) and assessed its performances in cervical cancer screening and prevention.
View Article and Find Full Text PDFDiagn Microbiol Infect Dis
December 2022
We evaluated the performance of SARS-CoV-2 TaqMan real-time reverse-transcription PCR (RT-qPCR) assays (ThermoFisher) for detecting 2 nonsynonymous spike protein mutations, E484K and N501Y. Assay accuracy was evaluated by whole genome sequencing (WGS). Residual nasopharyngeal SARS-CoV-2 positive samples (N = 510) from a diverse patient population in New York City submitted for routine SARS-CoV-2 testing during January-April 2020 were used.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
May 2022
Different treatments of harvest residues will change the quantity and quality of soil organic matter, with direct or indirect effects on the composition and content of soil nutrient. Nitrogen is one of the most important soil nutrients. However, the response of soil organic nitrogen fractions to different harvest residue treatments is still unclear.
View Article and Find Full Text PDFTaxus is a paclitaxel-containing herb with traditional usage in cancer treatment, and its extract possesses great oral bioavailability of paclitaxel. However, it is elusive whether paclitaxel-containing extract (HDS-1) can exert anti-tumor effect through oral administration and how other components contribute to its efficacy. Therefore, we investigate the oral-route anti-tumor effect of HDS-1 in A549-bearing mice.
View Article and Find Full Text PDFSoil extracellular enzyme activities and associated enzymatic stoichiometry are considered sensitive indicators of nutrient availability and microbial substrate limitation. However, many of previous studies have been focusing on uppermost soil layer with a single enzyme as representative of the whole nutrient acquisition, leading to critical uncertainties in understanding soil nutrient availability and its relationship with microbial activities in deeper soils. In the current study, we investigated C-, N- and P-acquiring enzyme activities across a range of soil layers (0-10, 10-20, 20-40 and 40-60 cm), and examined the microbial C, N and P limitation in natural secondary forests (NSF) and Chinese fir (Cunninghamia lanceolata) plantation forests (CPF) in subtropical China.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
November 2019
Forest harvesting changes the quantity and quality of organic matter inputs into soil, and thus would alter soil nutrient content and availability. Phosphorus (P) is a key element affecting plant growth. The effects of harvest residue treatments on soil P fractions and availability had not yet been evaluated.
View Article and Find Full Text PDFThe replacement of native forests by tree plantations is increasingly common globally, especially in tropical and subtropical areas. Improving our understanding of the long-term effects of this replacement on soil organic carbon (SOC) remains paramount for effectively managing ecosystems to mitigate anthropogenic carbon emissions. Meta-analyses imply that native forest replacement usually reduces SOC stocks and may switch the forest from a net sink to a net source of atmospheric carbon.
View Article and Find Full Text PDFA field experiment was conducted to understand the decomposition rates and chemical composition changes of leaf litter in logging residues of a 35-year-old secondary Castanopsis carlesii plantation over a period of one year. Mass loss rate of leaf litter showed an exponential decrease with time from May 2012 to April 2013, with a total 80% loss of initial dry mass. Net potassium (K) release was observed during this period, with only 5% of initial K remained.
View Article and Find Full Text PDFBackground: The proto-oncogene Casitas b-lineage lymphoma (c-Cbl) is an adaptor protein with an intrinsic E3 ubiquitin ligase activity that targets receptor and nonreceptor tyrosine kinases, resulting in their ubiquitination and downregulation. However, the function of c-Cbl in the control of cardiac function is currently unknown. In this study, we examined the role of c-Cbl in myocyte death and cardiac function after myocardial ischemia.
View Article and Find Full Text PDFNumerous studies demonstrated increased expression of extracellular matrix (ECM) proteins and activation of focal adhesion (FA) signaling pathways in models of pressure overload-induced cardiac hypertrophy. However, little is known about FA signaling in response to volume overload where cardiac hypertrophy is associated with ECM loss. This study examines the role of beta1-adrenergic receptors (β(1)-ARs) in FA signaling changes and myocyte apoptosis induced during acute hemodynamic stress of volume overload.
View Article and Find Full Text PDFThe canonical pathway for protein kinase D1 (PKD1) activation by growth factor receptors involves diacylglycerol binding to the C1 domain and protein kinase C-dependent phosphorylation at the activation loop. PKD1 then autophosphorylates at Ser(916), a modification frequently used as a surrogate marker of PKD1 activity. PKD1 also is cleaved by caspase-3 at a site in the C1-PH interdomain during apoptosis; the functional consequences of this cleavage event remain uncertain.
View Article and Find Full Text PDFThe neutrophil-derived serine protease, cathepsin G (Cat.G), has been shown to induce myocyte detachment and apoptosis by anoikis through down-regulation of focal adhesion (FA) signaling. However, the mechanisms that control FA protein stability and turnover in myocytes are not well understood.
View Article and Find Full Text PDFProtein kinase D (PKD) exists as a family of structurally related enzymes that are activated through similar phosphorylation-dependent mechanisms involving protein kinase C (PKC). While individual PKD isoforms could in theory mediate distinct biological functions, previous studies identify a high level of functional redundancy for PKD1 and PKD2 in various cellular contexts. This study shows that PKD1 and PKD2 are activated in a stimulus-specific manner in neonatal cardiomyocytes.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
October 2010
Protein kinase C-δ (PKCδ) exerts important cardiac actions as a lipid-regulated kinase. There is limited evidence that PKCδ also might exert an additional kinase-independent action as a regulator of the subcellular compartmentalization of binding partners such as Shc (Src homologous and collagen), a family of adapter proteins that play key roles in growth regulation and oxidative stress responses. This study shows that native PKCδ forms complexes with endogenous Shc proteins in H(2)O(2)-treated cardiomyocytes; H(2)O(2) treatment also leads to the accumulation of PKCδ and Shc in a detergent-insoluble cytoskeletal fraction and in mitochondria.
View Article and Find Full Text PDFBy using litter-bag method, the root decomposition characteristics of Castanopsis carlesii stand in Jian'ou Wanmulin Natural Reserve of Fujian Province were studied over two years. Three classes of roots, i.e.
View Article and Find Full Text PDFReactive oxygen species (ROS) exert pleiotropic effects on a wide array of signaling proteins that regulate cellular growth and apoptosis. This study shows that long-term treatment with a low concentration of H2O2 leads to the activation of signaling pathways involving extracellular signal-regulated kinase, ribosomal protein S6 kinase, and protein kinase D (PKD) that increase cAMP binding response element protein (CREB) phosphorylation at Ser(133) in cardiomyocytes. Although CREB-Ser(133) phosphorylation typically mediates cAMP-dependent increases in CREB target gene expression, the H2O2-dependent increase in CREB-Ser(133) phosphorylation is accompanied by a decrease in CREB protein abundance and no change in Cre-luciferase reporter activity.
View Article and Find Full Text PDFProtein kinase C-delta (PKCdelta) is a Ser/Thr kinase that regulates a wide range of cellular responses. This study identifies novel in vitro PKCdelta autophosphorylation sites at Thr(141) adjacent to the pseudosubstrate domain, Thr(218) in the C1A-C1B interdomain, Ser(295), Ser(302), and Ser(304) in the hinge region, and Ser(503) adjacent to Thr(505) in the activation loop. Cell-based studies show that Thr(141) and Thr(295) also are phosphorylated in vivo and that Thr(141) phosphorylation regulates the kinetics of PKCdelta downregulation in COS7 cells.
View Article and Find Full Text PDFp66Shc is an adapter protein that is induced by hypertrophic stimuli and has been implicated as a major regulator of reactive oxygen species (ROS) production and cardiovascular oxidative stress responses. This study implicates p66Shc in an alpha(1)-adrenergtic receptor (alpha(1)-AR) pathway that requires the cooperative effects of protein kinase (PK)Cepsilon and PKCdelta and leads to AKT-FOXO3a phosphorylation in cardiomyocytes. alpha(1)-ARs promote p66Shc-YY(239/240) phosphorylation via a ROS-dependent mechanism that is localized to caveolae and requires epidermal growth factor receptor (EGFR) and PKCepsilon activity.
View Article and Find Full Text PDFProtein kinase D1 (PKD1) is a physiologically important signaling enzyme that is activated via protein kinase C-dependent trans-phosphorylation of the activation loop at Ser744 and Ser748 followed by PKD1 autophosphorylation at Ser916. Although PKD-Ser916 autophosphorylation is widely used to track cellular PKD activity, this study exposes conditions leading to increased PKD-Ser(P)916 immunoreactivity without an associated increase in PKD activity in cardiomyocytes that heterologously overexpress catalytically inactive PKD1 and in cardiomyocytes treated with Gö6976 (a PKD inhibitor that competes with ATP). In each case, PKD1 is detected as a Ser916-phosphorylated enzyme that lacks kinase activity.
View Article and Find Full Text PDFp53 controls the cellular response to genotoxic stress through multiple mechanisms. We report here that p53 regulates DUSP1, a dual-specific threonine and tyrosine phosphatase with stringent substrate specificity for mitogen-activated protein kinase (MAPK). DUSP1 is a potent inhibitor of MAPK activity through dephosphorylation of MAPK.
View Article and Find Full Text PDFProtein kinase Cdelta (PKCdelta) activation is generally attributed to lipid cofactor-dependent allosteric activation mechanisms at membranes. However, recent studies indicate that PKCdelta also is dynamically regulated through tyrosine phosphorylation in H(2)O(2)- and phorbol 12-myristate 13-acetate (PMA)-treated cardiomyocytes. H(2)O(2) activates Src and related Src-family kinases (SFKs), which function as dual PKCdelta-Tyr(311) and -Tyr(332) kinases in vitro and contribute to H(2)O(2)-dependent PKCdelta-Tyr(311)/Tyr(332) phosphorylation in cardiomyocytes and in mouse embryo fibroblasts.
View Article and Find Full Text PDFMany growth regulatory stimuli promote cAMP response element-binding protein (CREB) Ser(133) phosphorylation, but the physiologically relevant CREB-Ser(133) kinase(s) in the heart remains uncertain. This study identifies a novel role for protein kinase D (PKD) as an in vivo cardiac CREB-Ser(133) kinase. We show that thrombin activates a PKCdelta-PKD pathway leading to CREB-Ser(133) phosphorylation in cardiomyocytes and cardiac fibroblasts.
View Article and Find Full Text PDF