Plasma-based acceleration has emerged as a highly promising candidate for future colliders and compact x-ray free electron lasers owing to its capability to efficiently accelerate electron and positron beams with high brightness over short distances. However, a major obstacle to its application in free electron lasers and colliders is the imposition of a substantial energy chirp on the output beams, resulting from the longitudinally dependent acceleration field. This Letter presents the first experimental demonstration of a beam energy dechirper using a hollow plasma channel.
View Article and Find Full Text PDFThe emergence of multi-petawatt laser facilities is expected to push forward the maximum energy gain that can be achieved in a single stage of a laser wakefield acceleration (LWFA) to tens of giga-electron volts, which begs the question-is it likely to impact particle physics by providing a truly compact particle collider? Colliders have very stringent requirements on beam energy, acceleration efficiency, and beam quality. In this article, we propose an LWFA scheme that can for the first time simultaneously achieve hitherto unrealized acceleration efficiency from the laser to the electron beam of >20% and a sub-1% energy spread using a stepwise plasma structure and a nonlinearly chirped laser pulse. Three-dimensional high-fidelity simulations show that the nonlinear chirp can effectively mitigate the laser waveform distortion and lengthen the acceleration distance.
View Article and Find Full Text PDFBackground: Inverse Compton scattering (ICS) source can produce quasi-monoenergetic micro-focus X-rays ranging from keV to MeV level, with potential applications in the field of high-resolution computed tomography (CT) imaging. ICS source has an energy-angle correlated feature that lower photon energy is obtained at larger emission angle, thus different photon energies are inherently contained in each ICS pulse, which is especially advantageous for dual- or multi-energy CT imaging.
Objective: This study proposes a dual-energy micro-focus CT scheme based on the energy-angle correlation of ICS source and tests its function using numerical simulations.
Proc Natl Acad Sci U S A
December 2022
The origin of the seed magnetic field that is amplified by the galactic dynamo is an open question in plasma astrophysics. Aside from primordial sources and the Biermann battery mechanism, plasma instabilities have also been proposed as a possible source of seed magnetic fields. Among them, thermal Weibel instability driven by temperature anisotropy has attracted broad interests due to its ubiquity in both laboratory and astrophysical plasmas.
View Article and Find Full Text PDFPlasma wakefield acceleration in the blowout regime is particularly promising for high-energy acceleration of electron beams because of its potential to simultaneously provide large acceleration gradients and high energy transfer efficiency while maintaining excellent beam quality. However, no equivalent regime for positron acceleration in plasma wakes has been discovered to date. We show that after a short propagation distance, an asymmetric electron beam drives a stable wakefield in a hollow plasma channel that can be both accelerating and focusing for a positron beam.
View Article and Find Full Text PDFThis Letter demonstrates a novel, to the best of our knowledge, method to measure the fluence distribution of an intense short laser pulse based on the radiochromic effect. We discovered that an intense short laser pulse can induce the color reaction with a radiochromic film (RCF). Further, the net optical density of an irradiated RCF is proportional to the fluence of the incident laser pulse in a large range (${2 {-} 120}\;{{{\rm mJ}/{\rm cm}}^2}$).
View Article and Find Full Text PDFThe temporal evolution of the magnetic field associated with electron thermal Weibel instability in optical-field ionized plasmas is measured using ultrashort (1.8 ps), relativistic (45 MeV) electron bunches from a linear accelerator. The self-generated magnetic fields are found to self-organize into a quasistatic structure consistent with a helicoid topology within a few picoseconds and such a structure lasts for tens of picoseconds in underdense plasmas.
View Article and Find Full Text PDFAvailability of relativistically intense, single-cycle, tunable infrared sources will open up new areas of relativistic nonlinear optics of plasmas, impulse IR spectroscopy and pump-probe experiments in the molecular fingerprint region. However, generation of such pulses is still a challenge by current methods. Recently, it has been proposed that time dependent refractive index associated with laser-produced nonlinear wakes in a suitably designed plasma density structure rapidly frequency down-converts photons.
View Article and Find Full Text PDFPhase-contrast imaging using X-ray sources with high spatial coherence is an emerging tool in biology and material science. Much of this research is being done using large synchrotron facilities or relatively low-flux microfocus X-ray tubes. An alternative high-flux, ultra-short and high-spatial-coherence table-top X-ray source based on betatron motions of electrons in laser wakefield accelerators has the promise to produce high quality images.
View Article and Find Full Text PDFLarge icosahedral viruses that infect bacteria represent an extreme of the coevolution of capsids and the genomes they accommodate. One subset of these large viruses is the jumbophages, tailed phages with double-stranded DNA genomes of at least 200,000 bp. We explored the mechanism leading to increased capsid and genome sizes by characterizing structures of several jumbophage capsids and the DNA packaged within them.
View Article and Find Full Text PDFIn China, Tsinghua Thomson Scattering X-ray Source (TTX) is the dedicated hard X-ray source based on the Thomson scattering between a terawatt ultrashort laser and a relativistic electron beam. In the TTX, two synchronized Ti: sapphire laser systems generate the terawatt ultrashort infrared scattering laser and the ultraviolet driving laser for the photocathode RF gun to produce the electron beam; measuring the timing jitter between the electron beam and the laser beam is an essential task for the X-ray source. In the present study, we report on a single shot, non-collinear cross correlator with fs resolution and measured the timing jitter between the two synchronized laser systems with a pulse-to-pulse method, which is beneficial to estimate the jitter of the X-ray yield in the TTX system.
View Article and Find Full Text PDFAs Thomson scattering x-ray sources based on the collision of intense laser and relativistic electrons have drawn much attention in various scientific fields, there is an increasing demand for the effective methods to reconstruct the spectrum information of the ultra-short and high-intensity x-ray pulses. In this paper, a precise spectrum measurement method for the Thomson scattering x-ray sources was proposed with the diffraction of a Highly Oriented Pyrolytic Graphite (HOPG) crystal and was demonstrated at the Tsinghua Thomson scattering X-ray source. The x-ray pulse is diffracted by a 15 mm (L) ×15 mm (H)× 1 mm (D) HOPG crystal with 1° mosaic spread.
View Article and Find Full Text PDFThomson scattering x-ray sources can produce ultrashort, energy tunable x-ray pulses characterized by high brightness, quasi-monochromatic, and high spatial coherence, which make it an ideal source for in-line phase-contrast imaging. We demonstrate the capacity of in-line phase-contrast imaging based on Tsinghua Thomson scattering X-ray source. Clear edge enhancement effect has been observed in the experiment.
View Article and Find Full Text PDFTsinghua Thomson Scattering X-ray Source (TTX) is the first-of-its-kind dedicated hard X-ray source in China based on the Thomson scattering between a terawatt ultrashort laser and relativistic electron beams. In this paper, we report the experimental generation and characterization of the first hard X-ray pulses (51.7 keV) via head-on collision of an 800 nm laser and 46.
View Article and Find Full Text PDFWe have demonstrated single-shot continuously time-resolved MeV ultrafast electron diffraction using a static single crystal gold sample. An MeV high density electron pulse was used to probe the sample and then streaked by an rf deflecting cavity. The single-shot, high quality, streaked diffraction pattern allowed structural information within several picoseconds to be continuously temporally resolved with an approximately 200 fs resolution.
View Article and Find Full Text PDF