Publications by authors named "Jianeng Lin"

Neurovascular coupling (NVC) connects neural activity with hemodynamics and plays a vital role in sustaining brain function. Combining electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) is a promising way to explore the NVC. However, the high-order property of EEG data and variability of hemodynamic response function (HRF) across subjects have not been well considered in existing NVC studies.

View Article and Find Full Text PDF

Deep brain stimulation (DBS) is a potential treatment that promotes the recovery of patients with disorders of consciousness (DOC). This study quantified the changes in consciousness and the neuromodulation effect of DBS on patients with DOC.Eleven patients were recruited for this study which consists of three conditions: 'Pre' (two days before DBS surgery), 'Post-On' (one month after surgery with stimulation), and 'Post-Off' (one month after surgery without stimulation).

View Article and Find Full Text PDF

Background: Early identification of mild cognitive impairment (MCI) is essential for its treatment and the prevention of dementia in Parkinson's disease (PD). Existing approaches are mostly based on neuropsychological assessments, while brain activation and connection have not been well considered.

New Method: This paper presents a neuroimaging-based graph frequency analysis method and the generated features to quantify the brain functional neurodegeneration and distinguish between PD-MCI patients and healthy controls.

View Article and Find Full Text PDF

Background And Objective: The simultaneous execution of a motor and cognitive dual task may lead to the deterioration of task performance in one or both tasks due to cognitive-motor interference (CMI). Neuroimaging techniques are promising ways to reveal the underlying neural mechanism of CMI. However, existing studies have only explored CMI from a single neuroimaging modality, which lack built-in validation and comparison of analysis results.

View Article and Find Full Text PDF

Objective: While deep brain stimulation (DBS) has proved effective for certain patients with disorders of consciousness (DOC), the working neural mechanism is not clear, the response varies for patients, and the assessment is inadequate. This paper aims to quantify the DBS-induced changes of consciousness in DOC patients at the neural functional level.

Methods: Ten DOC patients were included for DBS surgery.

View Article and Find Full Text PDF

Functional near-infrared spectroscopy (fNIRS) classification of mental states is of important significance in many neuroscience and clinical applications. Existing classification algorithms use all signal-collected brain regions as a whole, and brain sub-region contributions have not been well investigated. This paper proposes a functional region decomposition (FRD) method to incorporate brain sub-region contributions and enhance fNIRS classification of mental states.

View Article and Find Full Text PDF

Background And Objective: Deep brain stimulation (DBS) is an effective treatment for a number of neurological diseases, especially for the advanced stage of Parkinson's disease (PD). Objective assessment of patients' motor symptoms is crucial for accurate electrode targeting and treatment. Existing approaches suffer from subjective variability or interference with voluntary motion.

View Article and Find Full Text PDF

Deep brain stimulation (DBS) has shown a remarkably high effectiveness for Parkinson's disease (PD). In many PD patients during DBS surgery, the therapeutic effects of the stimulation test are estimated by assessing changes in bradykinesia as the stimulation voltage is increased. In this study, we evaluated the potential of the leap motion controller (LMC) to quantify the motor component of bradykinesia in PD during DBS surgery, as this could make the intraoperative assessment of bradykinesia more accurate.

View Article and Find Full Text PDF