Publications by authors named "Jiane Zuo"

The rapid enrichment of anaerobic ammonia oxidation (anammox) bacteria (AnAOB) is challenging owing to their slow growth rate. Substrate supply strategies influence the AnAOB yield and anammox performance. In this study, a feeding strategy for low nitrogen strength with constant substrate concentrations and a hydraulic retention time decreasing over a gradient was investigated in an up-flow sludge blanket reactor.

View Article and Find Full Text PDF

Sewer networks are essential components of urban infrastructure, yet their contribution to greenhouse gas (GHG) emissions remains poorly understood. In this study, we deployed a new approach of measurements to assess methane (CH) and nitrous oxide (NO) emissions across an urban sewer network, which spans 4769.43 m and receives about 750 m of domestic sewage per day.

View Article and Find Full Text PDF

Bioretention cells (BRCs) are increasingly used to treat nutrients in stormwater runoff, with plants known to enhance nitrogen (TN) and phosphorus (TP) uptake. This study investigated the role of rhizosphere microbial communities in TN, TP, and COD removal across three BRCs: an unvegetated control (CP), one vegetated with vetiver (P1), and another with cattail (P2). Detailed microbiome profiling revealed key taxa across phylum, family, and genus levels contributing to nutrient cycling, with P2 showing the highest species richness and diversity based on OTU counts and diversity indices.

View Article and Find Full Text PDF

A major concern regarding the risk of antibiotic production wastewater (APW) for the transmission of antibiotic resistance (AR) stems from the residual antibiotics. However, APW also contains high concentrations of organic pollutants, many of which have severe biological toxicity and joint toxicity with antibiotics. The contribution of these organic pollutants to the development of AR in the APW treatment system is unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Anaerobic ammonium oxidation (anammox) is an effective method for removing nitrogen from wastewater, but the production of nitrate as a byproduct presents challenges.
  • The review discusses the mechanisms and microbial pathways involved in nitrate formation during the anammox process, along with the impact of different operating conditions.
  • It also evaluates current nitrate removal strategies and identifies knowledge gaps, aiming to improve anammox process design and performance for better nitrogen removal.
View Article and Find Full Text PDF

Urban rivers are closely related to human life, and due to the widespread use of plastic products, rivers have become important carriers of pollutants such as microplastics (MP), phthalate esters (PAEs), and bisphenol A (BPA). However, our understanding of the distribution characteristics and relationships of MP, PAEs, and BPA in rivers is limited. In this study, MP, six PAEs and BPA were detected in the water and sediments of the Beiyun River basin.

View Article and Find Full Text PDF

Bioretention cells have emerged as a prominent strategy for mitigating pollutant loads within urban stormwater runoff. This study delves into the role of plant uptake in the simultaneous removal of nitrogen and phosphorus compounds within these systems. Three bioretention cells-CP, P1, and P2-were constructed using local soil, C33 sand, and gravel.

View Article and Find Full Text PDF

Antibiotic resistance (AR) is a major public health concern. Antibiotic intermediates (AIs) used in the production of semisynthetic antibiotics have the same bioactive structure as parent antibiotics and synthetic antibiotic production wastewater usually contains high concentrations of residual AIs; however, the effects of AIs and their interactive effects with antibiotics on the emergence of AR are unknown. In this study, antibiotic-sensitive E.

View Article and Find Full Text PDF

Methane (CH) and nitrous oxide (NO) are concerning greenhouse gases. Urban rivers have been important emission sources of CH and NO in recent years. It is meaningful for city greenhouse gas reduction to provide a systematic analysis of spatiotemporal characteristics, mechanisms, and influencing factors of the production and emission of CH and NO from urban rivers.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the effects of virgin and naturally aged polyethylene microplastics (PE) combined with cadmium (Cd) on the growth of pakchoi, focusing on factors like growth inhibition and soil enzyme activities.
  • - Results indicate that naturally aged PE negatively impacts pakchoi growth more than virgin PE, and while co-contamination with Cd is generally harmful, it can have varying effects depending on the plant's growth stage.
  • - The findings suggest that while aged PE has detrimental effects on agro-systems and food security, it can also have some beneficial outcomes for plant growth in heavy metal-contaminated soils during specific growth stages.
View Article and Find Full Text PDF

Tire wear particles (TWPs) in stormwater runoff have been widely detected and were generally classified into microplastics (MPs). TWPs and conventional MPs can be intercepted and accumulated in stormwater filtration systems, but their impacts on filtration, adsorption and microbial degradation processes of conventional pollutants (organic matters, nitrate and ammonium) have not been clarified. TWPs are different from MPs in surface feature, chemical components, adsorption ability and leaching of additives, which might lead to their different impacts on conventional pollutants removal.

View Article and Find Full Text PDF

Plastic weathering in the natural environment is a dynamic and complex process, where the release of microplastics, nanoplastics and additives poses potential threats to ecosystems. Understanding the release of different weathering products from plastics is crucial for predicting and assessing the environmental hazards of plastics. This study systematically explored these phenomena by exposing polystyrene (PS) to UV irradiation and mechanical agitation for different durations (1 day, 5 days, 10 days, 20 days).

View Article and Find Full Text PDF

Effluent quality deterioration caused by seasonal low temperature is a great challenge to the application of anammox technology. Here, the effects of different graphene materials on anammox process were investigated under both optimal temperature and low-temperature. The batch tests showed that at 30 °C, 300 mg/L of reduced graphene oxide‑sodium alginate gel (RGOSA) had the most significant promoting effect, reaching nitrogen removal efficiency (NRE) and nitrogen removal rate (NRR) of 95 % and 8.

View Article and Find Full Text PDF

Antibiotic wastewater contains a variety of pollutant stressors that can induce and promote antibiotic resistance (AR) when released into the environment. Although these substances are mostly in concentrations lower than those known to induce AR individually, it is possible that antibiotic wastewater discharge might still promote the AR transmission risk via additive or synergistic effects. However, the comprehensive effect of antibiotic wastewater on AR development has rarely been evaluated, and its treatment efficiency remains unknown.

View Article and Find Full Text PDF

Sulfide produced from sewers is considered one of the dominant threats to public health and sewer lifespan due to its toxicity and corrosiveness. In this study, we developed an environmentally friendly strategy for gaseous sulfide control by enriching indigenous sulfur-oxidizing bacteria (SOB) from sewer sediment. Ceramics acted as bio-carriers for immobilizing SOB for practical use in a lab-scale sewer reactor.

View Article and Find Full Text PDF

Decentralized wastewater treatment warrants considerable development in numerous countries and regions. Owing to the unique characteristics of high ammonia nitrogen concentrations and low carbon/nitrogen ratio, nitrogen removal is a key challenge in treating expressway service area sewage. In this study, an anoxic/oxic-moving bed biofilm reactor (A/O-MBBR) and a traditional A/O bioreactor were continuously operated for 115 days and their outcomes were compared to investigate the enhancement effect of carriers on the total nitrogen removal (TN) for expressway service area sewage.

View Article and Find Full Text PDF

Biodegradable microplastics (BMPs) and cadmium (Cd) are posing threats to agro-systems especially to plants and current studies mostly used virgin BMPs to explore their ecological effects. However, effects of naturally aged BMPs and their combined effects with Cd on pakchoi are yet to be unraveled. Therefore, this study incubated naturally aged polylactic acid (PLA) MPs through soil aging process and investigated the single and combined effects of Cd and PLA MPs (virgin and aged) on pakchoi (Brassica rapa subsp.

View Article and Find Full Text PDF

Anaerobic digestion (AD) is promising for treating high-strength wastewater. However, the effect of operational parameters on microbial communities of AD with sulfate is not yet fully understood. To explore this, four reactors were operated under rapid- and slow-filling modes with different organic carbons.

View Article and Find Full Text PDF

This review aims to provide a comprehensive understanding of the potential of CMs-dominated DIET in the degradation of recalcitrant organic pollutants in AD. The review covers the mechanisms and efficiencies of recalcitrant organic pollutant degradation by CMs-dominated DIET, the comparison of degradation pathways between DIET and chemical treatment, recent insights on DIET-enhanced degradation, and the evaluation of the potential and future development of CMs-dominated DIET. The review emphasizes the importance of coupled syntrophic microorganisms, electron flux, and physicochemical properties of CMs in enhancing the degradation performance of AD.

View Article and Find Full Text PDF

Achieving simultaneous carbon and nitrogen removal with sludge-liquid separation in a single reactor offers a solution to land shortages and improves treatment efficiency in municipal wastewater treatment plants of megacities. This study proposes a novel air-lifting continuous-flow reactor configuration with an alternative-aeration strategy that creates multi-functional zones for anoxic, oxic, and settlement processes. The optimal operating conditions for the reactor include a long anoxic hydraulic retention time, low dissolved oxygen (DO) in the oxic zone, and no specific reflux for external nitrifying liquid, which exhibit a high nitrogen removal efficiency of over 90% in treating real sewage with C/N < 4 in the pilot-scale study.

View Article and Find Full Text PDF

The study assessed the occurrence and distribution of microbial community and antibiotic resistance genes (ARGs) in food waste, anaerobic digestate, and paddy soil samples, and revealed the potential hosts of ARGs and factors influencing their distribution. A total of 24 bacterial phyla were identified, of which 16 were shared by all samples, with Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria accounting for 65.9-92.

View Article and Find Full Text PDF

This study performed a long-term operation to achieve efficient medium-chain fatty acids (MCFAs) production by anaerobic fermentation of food waste without external electron donors. The results show that total MCFAs reached the highest concentration of 29,886.10 mg COD/L, and n-caproate was the primary product, reaching the current maximum concentration of 28,191.

View Article and Find Full Text PDF

Rainfall runoff and combined sewer overflow (CSO) converge with organic waste, nutrients, and microbes from the ground and wastewater. These pollutants promote the spread and transformation of antibiotic resistance genes (ARGs). In this study, four rainfall runoff and one CSO outfall were chosen, and samples were collected to explore the occurrence and distribution of ARGs.

View Article and Find Full Text PDF

With the continuous development of nanomaterials in recent years, the application of nanocatalysts in catalytic ozone oxidation has attracted more and more researchers' attention due to their excellent catalytic properties. In this review, we systematically summarized the current research status of nanocatalysts mainly involving material categories, mechanisms and catalytic efficiency. Based on summary and analysis, we found most of the reported nanocatalysts were in the stage of laboratory research, which was caused by the nanocatalysts defects such as easy aggregation, difficult separation, and easy leakage.

View Article and Find Full Text PDF

Hydrogenotrophic denitrification (HD) is a promising autotrophic biological process for advanced nitrogen removal, while sludge granulation was seldom reported. This study aimed to cultivate granular sludge to improve capacity and stability of HD process. The resulting HD granular sludge performed high nitrogen removal rate (NRR) of 0.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionknn853i786f9bqprla3nrnlest8h17ru): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once