The use of seawater as a substitute for pure water as supplemental moisture raises questions about its effect on the physicochemical properties of hydrochar. Therefore, this study aimed to investigate the feasibility of using seawater as supplemental moisture by comparing the physicochemical properties of products obtained through Co-hydrothermal carbonization of chicken manure and cornstalk under seawater and deionized water conditions. By varying the HTC temperature and blending ratios of CM and CS to investigate comprehensively the effect of seawater.
View Article and Find Full Text PDFBlending lignocellulosic wastes (such as cornstalk, CS) into sewage sludge (SS) for hydrothermal carbonization (HTC) could contribute to the importance of the hydrothermal solid product (hydrochar) as a substitute for fossil fuel. However, the interactions between SS and CS changed the fate of Nitrogen (N), affecting the clean combustion utilization of hydrochar. This study focused on the influence of SS-CS interactions on the redistribution and migration behavior of N during the co-HTC process by tuning the mass ratio of SS to CS (SS:CS), reaction temperature, and residence time.
View Article and Find Full Text PDF