Breast mass segmentation in mammograms is still a challenging and clinically valuable task. In this paper, we propose an effective and lightweight segmentation model based on convolutional neural networks to automatically segment breast masses in whole mammograms. Specifically, we first developed feature strengthening modules to enhance relevant information about masses and other tissues and improve the representation power of low-resolution feature layers with high-resolution feature maps.
View Article and Find Full Text PDFPurpose: Breast mass segmentation in mammograms remains a crucial yet challenging topic in computer-aided diagnosis systems. Existing algorithms mainly used mass-centered patches to achieve mass segmentation, which is time-consuming and unstable in clinical diagnosis. Therefore, we aim to directly perform fully automated mass segmentation in whole mammograms with deep learning solutions.
View Article and Find Full Text PDF