Int J Biol Macromol
February 2025
Anticancer peptides (ACPs) demonstrate significant potential in clinical cancer treatment due to their ability to selectively target and kill cancer cells. In recent years, numerous artificial intelligence (AI) algorithms have been developed. However, many predictive methods lack sufficient wet lab validation, thereby constraining the progress of models and impeding the discovery of novel ACPs.
View Article and Find Full Text PDFAntidiabetic peptides (ADPs), peptides with potential antidiabetic activity, hold significant importance in the treatment and control of diabetes. Despite their therapeutic potential, the discovery and prediction of ADPs remain challenging due to limited data, the complex nature of peptide functions, and the expensive and time-consuming nature of traditional wet lab experiments. This study aims to address these challenges by exploring methods for the discovery and prediction of ADPs using advanced deep learning techniques.
View Article and Find Full Text PDFIn the development and progression of cervical cancer, oxidative stress plays an important role within the cells. Among them, Solute Carrier Family 7 Member 11 (SLC7A11/xCT) is crucial for maintaining the synthesis of glutathione and the antioxidant system in cervical cancer cells. In various tumor cells, studies have shown that SLC7A11 inhibits ferroptosis, a form of cell death, by mediating cystine uptake and maintaining glutathione synthesis.
View Article and Find Full Text PDFLactate dehydrogenase A (LDHA) is highly expressed in many tumor cells and promotes the conversion of pyruvate to lactic acid in the glucose pathway, providing energy and synthetic precursors for rapid proliferation of tumor cells. Therefore, inhibition of LDHA has become a widely concerned tumor treatment strategy. However, the research and development of highly efficient and low toxic LDHA small molecule inhibitors still faces challenges.
View Article and Find Full Text PDFIn humans and animals, the pyruvate dehydrogenase kinase (PDK) family proteins (PDKs 1-4) are excessively activated in metabolic disorders such as obesity, diabetes, and cancer, inhibiting the activity of pyruvate dehydrogenase (PDH) which plays a crucial role in energy and fatty acid metabolism and impairing its function. Intervention and regulation of PDH activity have become important research approaches for the treatment of various metabolic disorders. In this study, a small molecule (g25) targeting PDKs and activating PDH, was identified through multi-level computational screening methods.
View Article and Find Full Text PDFAs a member of the B-cell lymphoma 2 (Bcl-2) protein family, the myeloid leukemia cell differentiation protein (Mcl-1) can inhibit apoptosis and plays an active role in the process of tumor escape from apoptosis. Therefore, inhibition of Mcl-1 protein can effectively promote the apoptosis of tumor cells and may also reduce tumor cell resistance to drugs targeting other anti-apoptotic proteins. This research is dedicated to the development of Mcl-1 inhibitors, aiming to provide more references for lead compounds with different scaffolds for the development of targeted anticancer drugs.
View Article and Find Full Text PDFTranscriptional enhanced associate domain (TEAD) proteins bind to YAP/TAZ and mediate YAP/TAZ-induced gene expression. TEADs are not only the key transcription factors and final effector of the Hippo signaling pathway, but also the proteins that regulate cell proliferation and apoptosis. Disorders of Hippo signaling pathway occur in liver cancer, breast cancer, colon cancer and other cancers.
View Article and Find Full Text PDF