Publications by authors named "Jiancun Kou"

Due to the cold climate and low soil nutrient content, high-altitude mining areas are challenging to restore ecologically. Their poor nutrient content may be ameliorated by introducing specific microorganisms into the soil. This study aims to evaluate the effects of a highly efficient phosphate solubilizing bacterium MWP-1, , on plant growth, soil nutrients in remedying the soil of the high-altitude Muli mining area in Qinghai Province, and analyze its impact on microbial communities through high-throughput sequencing soil microbial communities.

View Article and Find Full Text PDF

This study aims to enlighten our understanding of the distribution of soil carbon-fixing bacteria (cbbL-harboring bacteria) and their community diversity in differently degraded patches at three altitudes. MiSeq high-throughput sequencing technology was used to analyze the soil carbon-fixing bacteria community diversity of degraded patches and healthy meadow at three altitudes. Redundancy analysis (RDA) and structural equation model (SEM) were used to analyze the correlation and influence path between environmental factors and carbon-fixing bacteria.

View Article and Find Full Text PDF

In order to understand the degradation of different residual pesticides of white clover silage and their influence on silage quality, three commonly used orchard pesticides with different concentrations were added to the white clover and fermented for 90 days. The results showed that the degradation rate of cypermethrin and its toxic degradation product 3-phenoxybenzoic acid (3-PBA) was the highest after silage, at different concentrations, both were 100%. The degradation rate of Tebuconazole and chloropyridine was 72.

View Article and Find Full Text PDF

Aiming to assess the efficiency of white clove (WC) as an alternative nitrogen source for composting and to facilitate the utilization of orchard waste, WC as compared with chicken manure (CM) was aerobically composted with apple tree leaves (ATL) in initial C/N ratios of 25(R25), 30(R30) and 35(R35). The results show that WC facilitated the rapid and harmless treatment of ATL with the compost temperature above 55°C for more than 3 days. After composting, for all final products, organic matter content was 69.

View Article and Find Full Text PDF

In this study, we investigated the effects of Saccharomyces cerevisiae (SC), Bacillus subtilis (BS) and Enterococcus faecalis (EF), singly and in combination, on the dry matter intake (DMI), milk production and composition, and faecal microflora of Saanen dairy goats. Fifty goats were randomly divided into five groups: (a) basal diet (control); (b) basal diet + SC; (c) basal diet + BS; (d) basal diet + EF; and (e) basal diet + mixed probiotics. Each treated animal received 5 g/d of probiotics for a total administration of 5 × 1,011 CFU/goat per day.

View Article and Find Full Text PDF

Sixty years ago Arnon and co-workers discovered photophosphorylation driven by a cyclic electron flux (CEF) around Photosystem I. Since then understanding the physiological roles and the regulation of CEF has progressed, mainly via genetic approaches. One basic problem remains, however: quantifying CEF in the absence of a net product.

View Article and Find Full Text PDF

Cyclic electron flux (CEF) around Photosystem I (PS I) is difficult to quantify. We obtained the linear electron flux (LEFO2) through both photosystems and the total electron flux through PS I (ETR1) in Arabidopsis in CO2-enriched air. ΔFlux = ETR1 - LEFO2 is an upper estimate of CEF, which consists of two components, an antimycin A-sensitive, PGR5 (proton gradient regulation 5 protein)-dependent component and an insensitive component facilitated by a chloroplastic nicotinamide adenine dinucleotide dehydrogenase-like complex (NDH).

View Article and Find Full Text PDF

Cyclic electron flux (CEF) around PSI is essential for efficient photosynthesis and aids photoprotection, especially in stressful conditions, but the difficulty in quantifying CEF is non-trivial. The total electron flux through PSI (ETR1) and the linear electron flux (LEFO2) through both photosystems in spinach leaf discs were estimated from the photochemical yield of PSI and the gross oxygen evolution rate, respectively, in CO2-enriched air. ΔFlux=ETR1 - LEFO2 is an upper estimate of CEF.

View Article and Find Full Text PDF

Since photosystem II (PS II) performs the demanding function of water oxidation using light energy, it is susceptible to photoinactivation during photosynthesis. The time course of photoinactivation of PS II yields useful information about the process. Depending on how PS II function is assayed, however, the time course seems to differ.

View Article and Find Full Text PDF

Photosystem II (PS II) is photoinactivated during photosynthesis, requiring repair to maintain full function during the day. What is the mechanism(s) of the initial events that lead to photoinactivation of PS II? Two hypotheses have been put forward. The 'excess-energy hypothesis' states that excess energy absorbed by chlorophyll (Chl), neither utilized in photosynthesis nor dissipated harmlessly in non-photochemical quenching, leads to PS II photoinactivation; the 'Mn hypothesis' (also termed the two-step hypothesis) states that light absorption by the Mn cluster in PS II is the primary effect that leads to dissociation of Mn, followed by damage to the reaction centre by light absorption by Chl.

View Article and Find Full Text PDF