Publications by authors named "Jianchen Lu"

Artificial dimension control has been playing a vital role in electronic structure manipulation and properties generation. However, systematic investigations into the dimensional regulation, such as transformation from two-dimensional (2D) materials to well-controlled one-dimensional (1D) ribbons, remain insufficient via molecular beam epitaxy. Here, high-quality ultranarrow zigzag CuTe nanoribbons are atomically precisely prepared via the dimensional regulation induced by adjusting the Te chemical potential, utilizing CuSe monolayer as the starting 2D template.

View Article and Find Full Text PDF

Controllably modulating the structure of transition-metal chalcogenides (TMCs) from 2D to 1D and tuning their electronic properties has drawn particular attention currently due to their remarkable properties and potential applications. In this work, by precisely controlling the chemical concentration of Te atoms, the transformation from the 2D honeycomb AgTe monolayer to high-quality and well-defined 1D AgTe nanowires on the Ag(111) substrate has been successfully achieved. The combination of scanning tunneling microscopy measurements and first-principles calculations has confirmed that the mechanism underlying the entire dimensional transformation lies in the directional movement of Ag atoms in the 2D AgTe monolayer regulated by the concentration of Te atoms.

View Article and Find Full Text PDF

Antimonene is a promising two-dimensional material that is calculated to have a significant fundamental bandgap usable for advanced applications such as field-effect transistors, photoelectric devices, and the quantum-spin Hall state. Herein, we conducted a comprehensive investigation of self-assembled Sb4 islands on Au and Ag surfaces by scanning tunneling microscopy. The Sb4 molecules form α-phase and β-phase structures on Au and Ag surfaces, respectively, each exhibiting distinct island patterns.

View Article and Find Full Text PDF

Polycyclic conjugated hydrocarbons have acquired increased interests recently because of their potential applications in electronic devices. On metal surfaces, the selective synthesis of four- and five-membered carbon rings remains challenging due to the presence of diverse reaction pathways. Here, utilizing the same precursor molecule, we successfully achieved substrate-controlled highly selective cycloaddition reactions towards four- and five-membered carbon rings.

View Article and Find Full Text PDF

The emergence of π-magnetism in low-dimensional carbon-based nanostructures, such as nanographenes (NGs), has captured significant attention due to their unique properties and potential applications in spintronics and quantum technologies. Recent advancements in on-surface synthesis under ultra-high vacuum conditions have enabled the atomically precise engineering of these nanostructures, effectively overcoming the challenges posed by their inherent strong chemical reactivity. This review highlights the essential concepts and synthesis methods used in studying NGs.

View Article and Find Full Text PDF
Article Synopsis
  • Tert-butyl functional groups influence how organic molecules self-assemble on surfaces, and controlling their removal is key for creating specific structures.
  • Precise stepwise removal of these groups in tetraazaperopyrene derivatives allowed for a transition through different supramolecular architectures, visualized using high-resolution scanning tunneling microscopy.
  • The research highlights the importance of molecular interactions in assembly processes and points to potential applications in stable nanostructure development for advanced molecular devices.
View Article and Find Full Text PDF

Using 4-(3,6-dibromo-9-carbazol-9-yl)benzonitrile (DBCB) precursors, we successfully constructed two types of cyano-substituted polymers on Au(111) by the molecular beam epitaxy method. According to the geometry, the two polymers are referred to as w-type polymers composed of -dimers and z-type polymers composed of -dimers. The intermediate dimers and final polymers were well characterized by high-resolution scanning tunneling microscopy (HR-STM).

View Article and Find Full Text PDF

Two-dimensional transition-metal chalcogenides (TMCs) have attracted considerable attention because of their exceptional photoelectric properties, finding applications in diverse fields such as photovoltaics, lithium-ion batteries, catalysis, and energy conversion and storage. Recently, experimentally fabricated monolayers of semiconducting CuTe have emerged as intriguing materials with outstanding thermal and photoelectric characteristics. In this study, we employ first-principles calculations to investigate the mechanical, electronic, and optical properties of monolayer CuTe exhibiting both λ and ζ structures, considering the effects of thickness and strain.

View Article and Find Full Text PDF

Selective activation of the C-H bond of aromatic hydrocarbons is significant in synthetic chemistry. However, achieving oriented C-H activation remains challenging due to the poor selectivity of aromatic C-H bonds. Herein, we successfully constructed alternately arranged Au-C4 and Au-O4 organometallic coordination networks through selective aromatic C-H bond activation on Au(111) substrate.

View Article and Find Full Text PDF

Nanographenes with zigzag edges, for example, anthenes, exhibit a unique nonbonding π-electron state, which can be described as a spin-polarized edge state that yields specific magnetic ground state. However, prior researches on the magnetism of anthenes with varying lengths on a surface is lacking. This study systematically fabricated anthenes with inherent zigzag carbon atoms of different lengths ranging from bisanthene to hexanthene.

View Article and Find Full Text PDF

Silicon monoxide (SiO) has attracted great attention due to its high theoretical specific capacity as an alternative material for conventional graphite anode, but its poor electrical conductivity and irreversible side reactions at the SiO/electrolyte interface seriously reduce its cycling stability. Here, to overcome the drawbacks, the dicharged SiO anode coated with Cu coating layer is elaborately designed by in-situ reduction method. Compared with the pristine SiO anode of lithium-ion battery (293 mAh g at 0.

View Article and Find Full Text PDF

Exploring the effect of porphin tautomerism on the regioselectivity of its derivatives is a big challenge, which is significant for the development and application of porphyrin drugs. In this work, we demonstrate the regioselectivity of 2-diphenylporphyrin (H-DPP) in the planarization reaction on Au(111) and Ag(111) substrates. H-DPP monomer forms two configurations ( and ) via a dehydrogenation coupling, between which the yield of the -configuration exceeds 90%.

View Article and Find Full Text PDF

Two-dimensional (2D) supramolecular self-assembly architectures are considered one of the most significant and challenging topics in nanotechnology and modern organic chemistry. The study of these processes on surfaces is vital to achieving a higher degree of control in the design of supramolecular architecture. Herein, we report on the 2D self-assembly monolayer architectures based on Cand Cmolecules on a semiconductor CuSe monolayer with periodic nanopores, which are essential for providing ideas for surface template chemistry.

View Article and Find Full Text PDF

The explorations to extend present chemical synthetic methods are of great importance to simplify synthetic routes of chemical species. Additionally, understanding the chemical reaction mechanisms is critical to achieve controllable synthesis for applications. Here, we report the on-surface visualization and identification of a phenyl group migration reaction of 1,4-dimethyl-2,3,5,6-tetraphenyl benzene (DMTPB) precursor on Au(111), Cu(111) and Ag(110) substrates.

View Article and Find Full Text PDF

Atomically precise fabrication of covalent-organic frameworks with well-defined heteroatom-dopant sites and further understanding of their electronic properties at the atomic level remain a challenge. Herein, we demonstrate the bottom-up synthesis of well-organized covalent-organic frameworks doped by nitrogen atoms on an Ag(111) substrate. Using high-resolution scanning tunneling microscopy and non-contact atomic force microscopy, the atomic structures of the intermediate metal-organic frameworks and the final covalent-organic frameworks are clearly identified.

View Article and Find Full Text PDF

Doped graphene nanoribbons (GNRs) with heteroatoms are a principal strategy to fine-tune the electronic structures of GNRs for future device applications. Here, we successfully synthesized the N=9 nitrogen-doped armchair GNR on the Au(111) surface. Due to the flexibility of precursor molecules, three different covalent bonds (C-C, C-N, N-N) are formed in the GNR backbone.

View Article and Find Full Text PDF

Two-dimensional (2D) transition metal dichalcogenides (TMDs) are emerging as new electrocatalysts and photocatalysts. The edge sites of 2D TMDs show high catalytic activity and are thus favored at the catalyst surface over TMD inert basal planes. However, 2D TMDs that predominantly expose edges are thermodynamically unfavorable, limiting the number of edge sites at the surface.

View Article and Find Full Text PDF

Zinc(ii) tetraphenylporphyrin (ZnTPP) has very broad application prospects in the fields of supramolecular chemistry, solar cells and nanomaterials. In this paper, by using scanning tunneling microscopy (STM), we systematically investigated the ZnTPP molecule and its four derivatives formed by thermal annealing were characterized unambiguously by bond-resolved STM (BR-STM). The electronic properties of the ZnTPP molecule and its four cyclodehydrogenation products were investigated by scanning tunneling spectroscopy (STS) combined with DFT calculations.

View Article and Find Full Text PDF

C-H bond activation and dehydrogenative coupling reactions have always been significant approaches to construct microscopic nanostructures on surfaces. By using scanning tunneling microscopy/spectroscopy (STM/STS) and non-contact atomic force microscopy (nc-AFM) combined with density functional theory (DFT), we systematically characterized the atomically precise topographies and electronic properties of H2TPP cyclodehydrogenation products on Au(111). Through surface-assisted thermal excitation, four types of cyclodehydrogenation products were obtained and clearly resolved in the nc-AFM images.

View Article and Find Full Text PDF

Materials possessing structural phase transformations exhibit a rich set of physical and chemical properties that can be used for a variety of applications. In 2D materials, structural transformations have so far been induced by strain, lasers, electron injection, electron/ion beams, thermal loss of stoichiometry, and chemical treatments or by a combination of such approaches and annealing. However, stoichiometry-preserving, purely thermal, reversible phase transitions, which are fundamental in physics and can be easily induced, have not been observed.

View Article and Find Full Text PDF

Employing a 1,3,5-tris(4-bromophenyl)benzene precursor as a building block, we successfully fabricate large-scale, non-multihole and single-layer pCOFs on the Ag(111) surface in a controllable manner via the on-surface reaction. We reveal that two main factors, the heating rate and growth temperature, have a strong impact on the size and quality of the pCOFs by STM. Furthermore, the band gap of the pCOFs has been further measured to be approximately 3.

View Article and Find Full Text PDF

Background: METTL3 is known to be involved in all stages in the life cycle of RNA. It affects the tumor formation by the regulation the m6A modification in the mRNAs of critical oncogenes or tumor suppressors. In bladder cancer, METTL3 could promote the bladder cancer progression via AFF4/NF-κB/MYC signaling network by an m6A dependent manner.

View Article and Find Full Text PDF

2D transition metal chalcogenides have attracted tremendous attention due to their novel properties and potential applications. Although 2D transition metal dichalcogenides are easily fabricated due to their layer-stacked bulk phase, 2D transition metal monochalcogenides are difficult to obtain. Recently, a single atomic layer transition metal monochalcogenide (CuSe) with an intrinsic pattern of nanoscale triangular holes is fabricated on Cu(111).

View Article and Find Full Text PDF

Recently, single-layer transition-metal dichalcogenides have drawn significant attention due to their remarkable physical properties in the monolayer as well as at the edges. Here, we constructed high-quality, single-layer MoSe islands on the Au(111) surfaces in ultrahigh vacuum by molecular beam epitaxy. All of the islands have hexagonal or triangular shapes with two kinds of well-defined edges.

View Article and Find Full Text PDF

Using atomic bromine and 2,6-diphenylanthracene (DPA), we successfully constructed and characterized the large-area 2D chiral networks on Ag(111) and Cu(111) surfaces by combining molecular beam epitaxy with scanning tunneling microscopy. The Br atoms distribute themselves periodically in the network with the maximum number of -C-H···Br hydrogen bonds. Density functional theory calculations demonstrate that the hydrogen bonds contribute to the stability of the Br-organic networks.

View Article and Find Full Text PDF