Light-emitting diodes (LEDs) based on metal halide perovskites (PeLEDs) with high colour quality and facile solution processing are promising candidates for full-colour and high-definition displays. Despite the great success achieved in green PeLEDs with lead bromide perovskites, it is still challenging to realize pure-red (620-650 nm) LEDs using iodine-based counterparts, as they are constrained by the low intrinsic bandgap. Here we report efficient and colour-stable PeLEDs across the entire pure-red region, with a peak external quantum efficiency reaching 28.
View Article and Find Full Text PDFLead halide perovskite light-emitting diodes (PeLEDs) have demonstrated remarkable optoelectronic performance. However, there are potential toxicity issues with lead and removing lead from the best-performing PeLEDs-without compromising their high external quantum efficiencies-remains a challenge. Here we report a tautomeric-mixture-coordination-induced electron localization strategy to stabilize the lead-free tin perovskite TEASnI (TEAI is 2-thiopheneethylammonium iodide) by incorporating cyanuric acid.
View Article and Find Full Text PDFThe lagging development of deep-blue perovskite light-emitting diodes (PeLEDs) heavily impedes their practical applications in full-color display due to the absence of spectrally stable emitters and the mismatch of carrier injection capacity. Herein, we report highly efficient deep-blue PeLEDs through a new chemical strategy that addresses the dilemma for simultaneously constant electroluminescence (EL) spectra and high-purify phase in reduced-dimensional perovskites. The success lies in the control of adsorption-energy differences between phenylbutylamine (PBA) and ethylamine (EA) interacting with perovskites, which facilitates narrow n-value distribution.
View Article and Find Full Text PDFJ Phys Condens Matter
February 2022
Perovskite single-crystal films are promising candidates for high-performance perovskite optoelectronic devices due to their optoelectrical properties. However, there are few reports of single-crystal films of tin based perovskites. Here, for the first time, we realize the controllable growth and preparation of lead-free tin perovskite MASnIsingle crystals via inverse temperature crystallization (ITC) strategy with γ-butyrolactone (GBL) as solvent.
View Article and Find Full Text PDFA two-step synthetic route using RE(OH)CO3 colloid spheres as the sacrificial template was designed to prepare monodisperse, pure bastnasite (RECO3F: RE = Ce, La, Pr, Nd) with a hole structure for the first time. A variety of morphologies, including jujube core-like, stacked nanoblocks, and stacked nanosheets were obtained through changing the ratio of reactants. The phase, structure, shapes, and photoluminescence properties of samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and photoluminescence (PL) spectroscopy.
View Article and Find Full Text PDFLn3+-Doped fluorides are economical and highly efficient luminescent materials, which play a crucial role in LEDs, biolabeling, and sensors. Therefore, Na5Gd9F32:Ln3+ sub-microspheres with tunable multicolor emissions were successfully synthesized via a simple water bath method employing colloidal Gd(OH)CO3 spheres as precursors. Samples were characterized by XRD, SEM, TEM, EDS and PL.
View Article and Find Full Text PDFIn this study, monodisperse and uniform β-NaYF hexagonal microtubes were successfully synthesized via a simple hydrothermal method without any organic surfactants, employing Y(OH)CO colloid spheres as precursors. The possible formation mechanism was studied on the basis of a series of time-dependent control experiments and its intrinsic crystal structure. The integrated emission intensity of β-NaYF:0.
View Article and Find Full Text PDFThree-dimensional (3D) flower-like CeO/BiOI heterostructures with different Ce/Bi molar ratio were successfully synthesized via a hydrothermal method using polyvinylpyrrolidone (PVP) as surfactant. The X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) results indicate that the CeO nanoparticles were successfully loaded on the surface of the flower-like BiOI. The photodegradation experiment demonstrated that the photocatalytic efficiency of CeO/BiOI samples were higher than that of pure BiOI and CeO, and CeO/BiOI heterostructure showed the best photocatalytic performance when the amount of CeO located at BiOI up to 15%.
View Article and Find Full Text PDF