Electrolyte transport in nanochannels plays an important role in a number of emerging areas. Using non-equilibrium molecular dynamics (NEMD) simulations, the fundamental transport behavior of an electrolyte/water solution in a confined model nanoenvironment is systematically investigated by varying the nanochannel dimension, solid phase, electrolyte phase, ion concentration and transport rate. It is found that the shear resistance encountered by the nanofluid strongly depends on these material/system parameters; furthermore, several effects are coupled.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
December 2009
Thermally induced variation in wetting ability in a confined nanoenvironment, indicated by the change in infiltration pressure as water molecules enter a model single-walled carbon nanotube submerged in aqueous environment, is investigated using molecular dynamics simulations. The temperature-dependent infiltration behavior is impacted in part by the thermally excited radial oscillation of the carbon nanotube, and in part by the variations of fundamental physical properties at the molecular level, including the hydrogen bonding interaction. The thermal effect is also closely coupled with the nanotube size effect and loading rate effect.
View Article and Find Full Text PDFPhys Chem Chem Phys
August 2009
Fluid channels with inclined solid walls (e.g. cone- and slit-shaped pores) have wide and promising applications in micro- and nano-engineering and science.
View Article and Find Full Text PDFWhen a nonwetting fluid is forced to infiltrate a hydrophobic nanoporous solid, the external mechanical work is partially dissipated into thermal energy and partially converted to the liquid-solid interface energy to increase its enthalpy, resulting in a system with a superior energy absorption performance. To clarify the energy dissipation and conversion mechanisms, experimental infiltration and defiltration tests of liquid/ion solutions into nanopores of a hydrophobic ZSM-5 zeolite were conducted. The characteristics of energy dissipation were quantified by measuring the temperature variation of the immersed liquid environment and compared against that estimated from pressure-infiltration volume isotherms during infiltration and defiltration stages of the test.
View Article and Find Full Text PDFA fundamental understanding of the thermal effects on nanofluid behaviors is critical for developing and designing innovative thermally responsive nanodevices. Using molecular dynamics (MD) simulation and experiment, we investigate the temperature-dependent intrusion/adsorption of water molecules into hydrophobic nanopores (carbon nanotubes and nanoporous carbon) and the underlying mechanisms. The critical infiltration pressure is reduced for elevated temperature or increased pore size.
View Article and Find Full Text PDFNovel strategies for cancer treatment involving macromolecular therapeutic agents have been recently developed and show promising results. Inadequate and heterogeneous uptake in tumor tissue has been shown to be a major obstacle for these compounds in clinical cancer therapy. Such distributions have been difficult to account for in predictive models.
View Article and Find Full Text PDFLocal drug delivery methods, including convection-enhanced delivery (CED), are being used to increase distribution in selected regions of nervous tissue. There is a need for 3D models that predict spatial drug distribution within these tissues. A methodology was developed to process magnetic resonance microscopy (MRM) and diffusion tensor imaging (DTI) scans, segment gray and white matter regions, assign tissue transport properties, and model the interstitial transport of macromolecules.
View Article and Find Full Text PDF