Publications by authors named "Jianbing Qin"

Background: Neural stem cells (NSCs) are considered to be the most promising cell type for cell replacement therapy in neurodegenerative diseases. However, their low neuronal differentiation ratio impedes their application in such conditions. Elucidating the molecular mechanism of NSC differentiation may provide the necessary experimental basis for expanding their application.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a major cause of death and disability that involves brain dysfunction due to external forces. Here, we found lower levels of Ubiquinol-cytochrome c reductase, complex III subunit XI (Uqcr11) expression in the cerebral cortex of TBI mice. A neuronal damage model was constructed using HO or hypoxia reoxygenation (H/R) in vitro.

View Article and Find Full Text PDF

Amyloid-β (Aβ ) is strongly associated with Alzheimer's disease (AD). The aim of this study is to elucidate whether and how miR-6076 participates in the modulation of amyloid-β (Aβ)-induced neuronal damage. To construct the neuronal damage model, SH-SY5Y cells were treated with Aβ .

View Article and Find Full Text PDF

The transcription factor Brn4 exhibits vital roles in the embryonic development of the neural tube, inner ear, pancreas islet, and neural stem cell differentiation. Our previous studies have shown that Brn4 promotes neuronal differentiation of hippocampal neural stem cells (NSCs). However, its mechanism is still unclear.

View Article and Find Full Text PDF

Neural stem cells (NSCs) are a class of self-renewing, multipotent and undifferentiated progenitor cells that retain the capacity to both glial and neuronal lineages. MicroRNAs (miRNAs) are small non-coding RNAs that play an important role in stem cell fate determination and self-renewal. Our previous RNA-seq data indicated that the expression of miR-6216 was decreased in denervated hippocampal exosomes compared with normal.

View Article and Find Full Text PDF

In the adult mammalian brain, neural stem cells (NSCs) are the precursor cells of neurons that contribute to nervous system development, regeneration, and repair. MicroRNAs (miRNAs) are small non-coding RNAs that regulate cell fate determination and differentiation by negatively regulating gene expression. Here, we identified a post-transcriptional mechanism, centred around miR-130a-3p that regulated NSC differentiation.

View Article and Find Full Text PDF

Neural stem cells (NSCs) persist in the dentate gyrus of the hippocampus into adulthood and are essential for both neurogenesis and neural circuit integration. Exosomes have also been shown to play vital roles in regulating biological processes of receptor cells as a medium for cell-to-cell communication signaling molecules. The precise molecular mechanisms of exosome-mediated signaling, however, remain largely unknown.

View Article and Find Full Text PDF

Glioma multiforme (GBM) is the most common malignant primary brain tumors. Despite the considerable advances in GBM treatment, it is still one of the most lethal forms of brain tumor. New clinical biomarkers and therapeutic targets are immediately required.

View Article and Find Full Text PDF

The regulation of adult neural stem cells (NSCs) is critical for lifelong neurogenesis. MicroRNAs (miRNAs) are a type of small, endogenous RNAs that regulate gene expression post-transcriptionally and influence signaling networks responsible for several cellular processes. In this study, miR-103-3p was transfected into neural stem cells derived from embryonic hippocampal neural stem cells.

View Article and Find Full Text PDF

Glioblastoma (GBM) is a primary malignant tumor characterized by high infiltration and angiogenesis in the brain parenchyma. Glioma stem cells (GSCs), a heterogeneous GBM cell type with the potential for self-renewal and differentiation to tumor cells, are responsible for the high malignancy of GBM. The purpose of the present study was to investigate the roles of significantly differentially expressed genes between GSCs and GBM cells in GBM progression.

View Article and Find Full Text PDF

MicroRNA-33-3p (miR-33-3p) has been widely investigated for its roles in lipid metabolism and mitochondrial function; however, there are few studies on miR-33-3p in the context of neurological diseases. In this study, we investigated the functional role of miR-33-3p in rat pheochromocytoma PC12 cells. A miR-33-3p mimic was transduced into PC12 cells, and its effects on proliferation, apoptosis, and differentiation were studied using the MTS assay, EdU labeling, flow cytometry, qRT-PCR, western blot, ELISA, and immunofluorescence.

View Article and Find Full Text PDF

Glioblastoma multiform (GBM) is the most common and malignant primary brain cancer in adults, and thus, novel potential therapeutic targets for diagnosis and treatment are urgently needed. Circular RNAs (circRNAs) are a class of widespread and diverse endogenous RNAs that have been suggested as potential critical mediators during progression of various tumors. In this study, we investigated the involvement of circHECTD1 in GBM progression.

View Article and Find Full Text PDF

Background: In the brain of adult mammals, neural stem cells persist in the subventricular zone of the lateral ventricle and the subgranular zone of the dentate gyrus, which are specialized niches with proliferative capacity. Most neural stem cells are in a quiescent state, but in response to extrinsic stimuli, they can exit from quiescence and become reactivated to produce new neurons, so neural stem cells are considered to be a potential source for cell replacement therapy of many nervous system diseases. We characterized the expression of Ndel1 during the differentiation of neural stem cells induced by hippocampus exosomes, and assessed the effect of Ndel1 on neural stem cells differentiation.

View Article and Find Full Text PDF

Exosomes transfer signaling molecules such as proteins, lipids, and RNAs to facilitate cell-cell communication and play an important role in the stem cell microenvironment. In previous work, we demonstrated that rat fimbria-fornix transection (FFT) enhances neurogenesis from neural stem cells (NSCs) in the subgranular zone (SGZ). However, how neurogenesis is modulated after denervation remains unknown.

View Article and Find Full Text PDF

Damage to the cholinergic system in central nervous system injuries such as traumatic brain injury (TBI) and neurodegenerative diseases leads to impaired learning and cognition. Neural stem cells (NSCs) have self-renewal capacity and multi-directional differentiation potential and considered the best source of cells for cell replacement therapy. However, how to promote the differentiation of NSCs into neurons is a major challenge in current research.

View Article and Find Full Text PDF

Glioma is the most common primary brain tumor and the most malignant type of glioma is glioblastoma with the character of high mortality, high recurrence rate and poor prognosis. MicroRNAs act as an important component in glioma development and thus may be a potential target for the treatment of glioma. There were some researches indicated that miR-210-3p played a role in glioma development, but if it can inhibit glioma growth, as well as the underlying mechanism, is still uncertain.

View Article and Find Full Text PDF

Background: Runt-related transcription factor 1 translocated to 1 (Runx1t1) is one of the members of the myeloid translocation gene family. Our previous work showed that Runx1t1 induced the neuronal differentiation of radial glia cells in vitro.

Methods: To better uncover the role of Runx1t1 in hippocampal neurogenesis, in this study, we further explore its localization and function during the hippocampal neurogenesis.

View Article and Find Full Text PDF

Resveratrol is one of the most studied plant secondary metabolites owing to its numerous health benefits. It is accumulated in some plants following biotic and abiotic stress pressures, including UV-C irradiation. represents the major natural source of concentrated resveratrol but the underlying mechanisms as well as the effects of UV-C irradiation on resveratrol content have not yet been documented.

View Article and Find Full Text PDF

Valproate (VPA), an effective clinical approved anti-epileptic drug and mood stabilizer, has been believed to induce neuronal differentiation at the expense of inhibiting astrocytic and oligodendrocytic differentiation. Nevertheless, the involving mechanisms of it remain unclear yet. In the present study, we explored the global gene expression changes of fetus rat hippocampal neural stem cells following VPA treatment by high-throughput microarray.

View Article and Find Full Text PDF

Background: Increasing evidence has revealed that long non-coding RNAs (lncRNAs) play a pivotal role in the development of nervous system. Our previous studies have demonstrated that enhanced cholinergic neurogenesis occurs in the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG) after cholinergic denervation, which is closely associated with the core transcription factor Lhx8. This study aimed to identify novel lncRNAs in a denervated hippocampal niche, which may affect cholinergic neurogenesis, and to explore the molecular mechanisms underlying cholinergic neurogenesis.

View Article and Find Full Text PDF

Docosahexaenoic acid (DHA) is the most abundant n-3 polyunsaturated fatty acid in the human brain and works as an anticancer agent to induce cell cycle arrest and apoptosis in glioblastoma multiforme (GBM) cell lines. However, little is known about the connection between DHA and autophagy in GBM cells. We found that high-dose DHA caused cellular autophagy in cultured U251 and U118 GBM cell lines, but there was no effect with a low dose.

View Article and Find Full Text PDF

To investigate the effect of CXCL12 on regeneration of radial glia like cells after traumatic brain injury (TBI). We randomly divided 48 rats into 4 groups: (1) the sham group, rats were performed craniotomy only, (2) the control group, saline were injected into the ipsilateral cortex after TBI, (3) the CXCL12 group, CXCL12 were injected, and (4) the CXCL12 + AMD3100 group, a mixture of CXCL12 and AMD3100 were injected. Seven days after TBI, the brain tissues were subjected to immunofluorescence double-labeled staining of BrdU/Nestin, BLBP/Nestin, BLBP/Vimentin, BLBP/SOX2, BLBP/CXCR4, BLBP/DCX.

View Article and Find Full Text PDF

Growth arrest-specific 5 (GAS5) is an anti-oncogene that has been extensively studied in tumors. However, research on GAS5 in the context of nervous system disease is rare at present. This study aimed to investigate the role of the long non-coding RNA GAS5 in rat pheochromocytoma cells (PC12 cells).

View Article and Find Full Text PDF

Due to the limited capacity of brain tissue to self-regenerate after traumatic brain injury (TBI), the mobilization of endogenous neural stem cells (NSCs) is a popular research topic. In the clinic, the neurogenic abilities of adults versus neonates vary greatly, which is likely related to functional differences in NSCs. Recent studies have demonstrated that the molecules secreted from astrocytes play important roles in NSC fate determination.

View Article and Find Full Text PDF