Publications by authors named "Jianbin Lai"

Upon injury, both mammalian and plant cells activate a survival mechanism by sensing endogenous damage-associated molecular patterns (DAMPs). Plant elicitor peptides (Peps), a representative DAMP, are released from their precursors (PROPEPs; Precursors of Peps) through cleavage by metacaspases (MCs), but the control of Pep generation remains unclear. Here, we discovered that several PROPEPs in Arabidopsis thaliana are substrates for SUMOylation and that Ca upregulates PROPEP1 SUMOylation, facilitated by the SUMO E3 ligase SAP and MIZ1 domain-containing ligase1 (SIZ1).

View Article and Find Full Text PDF

Carnosic acid (CA) is recognized as an antioxidant that confers protection to plants against various forms of oxidative stress, including UV-B stress. However, limited research has been conducted to elucidate the molecular mechanisms underlying its defence against UV-B stress. In this study, we demonstrated that CA exhibits more efficacy compared to other antioxidants in UV-B resistance.

View Article and Find Full Text PDF
Article Synopsis
  • * The study investigates how SUMO (small ubiquitin-related modifier) proteins affect miRNA expression during heat stress, finding that these proteins bind to the promoter regions of specific miRNAs like miR398a and miR824a.
  • * Results showed that disrupting the SUMO E3 ligase SAP AND MIZ 1 in Arabidopsis changed the expression of SUMO-related miRNAs, suggesting a model where high temperatures promote SUMO entry into the nucleus, affecting transcription factors that regulate miRNA genes.
View Article and Find Full Text PDF

Under warm temperatures, plants adjust their morphologies for environmental adaption via precise gene expression regulation. However, the function and regulation of alternative polyadenylation (APA), an important fine-tuning of gene expression, remains unknown in plant thermomorphogenesis. In this study, we found that SUMOylation, a critical post-translational modification, is induced by a long-term treatment at warm temperatures via a SUMO ligase SIZ1 in Arabidopsis.

View Article and Find Full Text PDF

Geminiviruses are an important group of viruses that infect a variety of plants and result in heavy agricultural losses worldwide. The homologs of C4 (or L4) in monopartite geminiviruses and AC4 (or AL4) in bipartite geminiviruses are critical viral proteins. The C4 proteins from several geminiviruses are the substrates of S-acylation, a dynamic post-translational modification, for the maintenance of their membrane localization and function in virus infection.

View Article and Find Full Text PDF

Bacterial pathogens deliver effectors into host cells to suppress immunity. How host cells target these effectors is critical in pathogen-host interactions. SUMOylation, an important type of posttranslational modification in eukaryotic cells, plays a critical role in immunity, but its effect on bacterial effectors remains unclear in plant cells.

View Article and Find Full Text PDF

Small peptides modulate multiple processes in plant cells, but their regulation by post-translational modification remains unclear. ROT4 (ROTUNDIFOLIA4) belongs to a family of Arabidopsis non-secreted small peptides, but knowledge on its molecular function and how it is regulated is limited. Here, we find that ROT4 is S-acylated in plant cells.

View Article and Find Full Text PDF

Brassinosteroids (BRs) are important plant hormones involved in many aspects of development. Here, we show that BRASSINOSTEROID SIGNALING KINASEs (BSKs), key components of the BR pathway, are precisely controlled via de-S-acylation mediated by the defense hormone salicylic acid (SA). Most Arabidopsis BSK members are substrates of S-acylation, a reversible protein lipidation that is essential for their membrane localization and physiological function.

View Article and Find Full Text PDF

Rosemary (Salvia rosmarinus) is considered a sacred plant because of its special fragrance and is commonly used in cooking and traditional medicine. Here, we report a high-quality chromosome-level assembly of the S. rosmarinus genome of 1.

View Article and Find Full Text PDF

Changes in plant auxin levels can be perceived and converted into cellular responses by auxin signal transduction. AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) proteins are auxin transcriptional inhibitors that play important roles in regulating auxin signal transduction. The stability of Aux/IAA proteins is important for transcription initiation and downstream auxin-related gene expression.

View Article and Find Full Text PDF
Article Synopsis
  • Global warming is leading to high-temperature stress that negatively impacts plant growth and development more frequently.
  • Studies are focusing on how plants respond to temperature changes, with a key role played by post-translational modifications (PTMs) that help regulate gene expression quickly.
  • Various types of PTMs, like ubiquitination and phosphorylation, are discussed as mechanisms for plants to adapt and potentially improve crop productivity under elevated temperatures.
View Article and Find Full Text PDF

Heat stress (HS) has serious negative effects on plant development and has become a major threat to agriculture. A rapid transcriptional regulatory cascade has evolved in plants in response to HS. Nuclear Factor-Y (NF-Y) complexes are critical for this mechanism, but how NF-Y complexes are regulated remains unclear.

View Article and Find Full Text PDF

In eukaryotes, the STRUCTURAL MAINTENANCE OF CHROMOSOME 5/6 (SMC5/6) complex is critical to maintaining chromosomal structures around double-strand breaks (DSBs) in DNA damage repair. However, the recruitment mechanism of this conserved complex at DSBs remains unclear. In this study, using Arabidopsis thaliana as a model, we found that SMC5/6 localization at DSBs is dependent on the protein scaffold containing INVOLVED IN DE NOVO 2 (IDN2), CELL DIVISION CYCLE 5 (CDC5), and ALTERATION/DEFICIENCY IN ACTIVATION 2B (ADA2b), whose recruitment is further mediated by DNA-damage-induced RNAs (diRNAs) generated from DNA regions around DSBs.

View Article and Find Full Text PDF

Geminiviruses are a large group of plant viruses that have been a serious threat to worldwide agriculture. Transcription of the virus-encoded genes is necessary for geminiviruses to complete their life cycle, but the host proteins which directly target geminivirus promoters for suppression of viral gene transcription remain to be identified. Using Beet severe curly top virus (BSCTV) which causes severe plant symptoms as a system, we performed a yeast one-hybrid screening and identified ABA INSENSITIVE 5 (ABI5), a critical transcription factor in Abscisic acid (ABA) signaling transduction, as an interactor with the viral promoter.

View Article and Find Full Text PDF

Chloroplasts are hypersensitive to heat stress (HS). SUMOylation, a critical post-translational modification, is conservatively involved in HS responses. However, the functional connection between SUMOylation and chloroplasts under HS remains to be studied.

View Article and Find Full Text PDF

SUMOylation is a critical post-translational modification that regulates the nature and activity of protein substrates. The reaction is usually enhanced by a SIZ/PIAS-type of SUMO E3 ligase, but the functions of its homologs in maize have not yet been reported. In this study, we functionally characterized three members of this family of SUMO ligases, ZmSIZ1a, ZmSIZ1b, and ZmSIZ1c, from Zea mays.

View Article and Find Full Text PDF

Protein S-acylation is an important post-translational modification in eukaryotes, regulating the subcellular localization, trafficking, stability, and activity of substrate proteins. The dynamic regulation of this reversible modification is mediated inversely by protein S-acyltransferases and de-S-acylation enzymes, but the de-S-acylation mechanism remains unclear in plant cells. Here, we characterized a group of putative protein de-S-acylation enzymes in Arabidopsis thaliana, including 11 members of Alpha/Beta Hydrolase Domain-containing Protein 17-like acyl protein thioesterases (ABAPTs).

View Article and Find Full Text PDF

Gene transcription is critical for various cellular processes and is precisely controlled at multiple levels, and posttranslational modification (PTM) is a fast and powerful way to regulate transcription factors (TFs). SUMOylation, which conjugates small ubiquitin-related modifier (SUMO) molecules to protein substrates, is a crucial PTM that modulates the activity, stability, subcellular localization, and partner interactions of TFs in plant cells. Here, we summarize the mechanisms of SUMOylation in the regulation of transcription in plant development and stress responses.

View Article and Find Full Text PDF

SUMOylation, which transfers the Small Ubiquitin-related Modifier (SUMO) polypeptides to target proteins, regulates diverse cellular processes in eukaryotes. The SUMO conjugation reaction is usually promoted by SUMO E3 ligases, but the molecular functions of this type of enzymes remain unclear in cereal crops. Here, OsMMS21, a SUMO E3 ligase, was functionally characterized in rice (Oryza sativa).

View Article and Find Full Text PDF

The post-translational protein modification known as SUMOylation has conserved roles in the heat stress responses of various species. The functional connection between the global regulation of gene expression and chromatin-associated SUMOylation in plant cells is unknown. Here, we uncovered a genome-wide relationship between chromatin-associated SUMOylation and transcriptional switches in grown at room temperature, exposed to heat stress, and exposed to heat stress followed by recovery.

View Article and Find Full Text PDF

Geminiviruses are a large group of single-stranded DNA viruses that infect plants and cause severe agricultural losses worldwide. Given geminiviruses only have small genomes that encode a few proteins, viral factors have to interact with host components to establish an environment suitable for virus infection, whilst the host immunity system recognizes and targets these viral components during infection. Post-translational protein modifications, such as phosphorylation, lipidation, ubiquitination, SUMOylation, acetylation and methylation, have been reported to be critical during the interplay between host plants and geminiviruses.

View Article and Find Full Text PDF

The annual Zea mays ssp. mexicana L. is a member of the teosinte group and a close wild relative of maize.

View Article and Find Full Text PDF

Heat stress (HS) has serious effects on plant development, resulting in heavy agricultural losses. A critical transcription factor network is involved in plant adaptation to high temperature. DEHYDRATION RESPONSIVE ELEMENT-BINDING PROTEIN2A (DREB2A) is a key transcription factor that functions in plant thermotolerance.

View Article and Find Full Text PDF

Geminiviruses are DNA viruses that cause severe diseases in diverse species of plants, resulting in considerable agricultural losses worldwide. C4 proteins are a major symptom determinant in several geminiviruses, including Beet severe curly top virus (BSCTV). Here, we uncovered a novel mechanism by which danger peptide signaling enhances the internalization of BSCTV C4 in plant cells.

View Article and Find Full Text PDF