Publications by authors named "Jianan Ma"

Tumor-associated macrophages (TAMs) are a critical component of the immunosuppressive tumor microenvironment, comprising monocyte-derived macrophages (MDM-TAMs) and tissue-resident macrophages (TRM-TAMs). Here, we discovered that TRM-TAMs mediate the pro-tumor effects of interleukin (IL)-17A and that IL-17A-driven tumor progression requires tumor cell production of osteopontin (OPN). Mechanistically, we identified CEBPβ as a transcription factor downstream of IL-17A in tumor cells and LYVE-1 as an OPN receptor on TRM-TAMs.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how ectomycorrhizal fungi and trees exchange nutrients, specifically focusing on how sugars move from tree roots to the fungi.
  • Researchers identified the PtaSWEET1c transporter in Populus tremula × alba as key for transporting sugars like glucose and sucrose at the roots.
  • Findings showed that inactivating PtaSWEET1c decreased root formation and sugar transfer to the fungi, highlighting its vital role in this mutualistic relationship.
View Article and Find Full Text PDF

Nanodomain engineering in lithium niobate on insulator (LNOI) is critical to realize advanced photonic circuits. Here, we investigate the tip-induced nanodomain formation in x-cut LNOI. The effective electric field exhibits a mirror symmetry, which can be divided into preceding and sequential halves according to the tip movement.

View Article and Find Full Text PDF

This work introduces a pioneering approach in the development of organic thin-film transistors (OTFTs), featuring a double-layer dielectric structure that combines poly(-xylylene)s (Parylene) and poly(methyl methacrylate) (PMMA) to leverage the high insulation properties and high surface polarity of Parylene with the low insulation properties and low surface polarity of PMMA. This combination results in devices that showcase significantly enhanced electrical performance, including superior charge carrier mobility, increased current on/off ratios, and greater transconductance. Utilizing poly(3-hexylthiophene) (P3HT) for the active layer, the study demonstrates the advantage of the dual dielectric layers in minimizing hysteresis in the transfer curve, thereby facilitating the systematic growth of the organic active layer and enhancing electrical conductivity over single-layer alternatives.

View Article and Find Full Text PDF

MXene, renowned for its natural "quantum-confined-superfluidic" (QSF) channels, demonstrates superior electrical/thermal conductivity, favorable hydrophilicity, and remarkable mechanical strength, rendering it an ideal candidate for multiresponsive actuators, which are promising for soft electronics and robots. Currently, most MXene-based actuators are mainly prepared by combining an active layer and an inner layer, with only a few utilizing regulated QSF channels. However, tailoring QSF channels for multiresponsive actuators is extremely challenging.

View Article and Find Full Text PDF
Article Synopsis
  • A new nonlinear holographic technique can process optical information at newly generated frequencies, beneficial for laser displays, security, and image recognition.
  • A popular method uses periodically poled lithium niobate (LN) crystals, but traditional methods limit pixel size and field-of-view (FOV) to several micrometers and degrees, respectively.
  • This study demonstrates a high-resolution LN hologram with 200 nm pixel size and FOV over 120°, achieving better image quality through techniques like Fourier transform and multiple diffraction orders.
View Article and Find Full Text PDF

Background: Gestodene (GEST) is widely used in female contraception. It is currently being used as an oral contraceptive. However, unfortunately, oral contraceptives are often associated with several bothersome side effects and poor compliance.

View Article and Find Full Text PDF

Lithium niobate on insulator (LNOI) is a powerful platform for integrated photonic circuits. Recently, advanced applications in nonlinear and quantum optics require to controllably fabricate nano-resolution domain structures in LNOI. Here, we report on the fabrication of stable domain structures with sub-100 nm feature size through piezoelectric force microscopy (PFM) tip poling in a z-cut LNOI.

View Article and Find Full Text PDF

Nonlinear optics provides a means to bridge between different electromagnetic frequencies, enabling communication between visible, infrared, and terahertz bands through χ and higher-order nonlinear optical processes. However, precisely modulating nonlinear optical waves in 3D space remains a significant challenge, severely limiting the ability to directly manipulate optical information across different wavelength bands. Here, we propose and experimentally demonstrate a three-dimensional (3D) χ-super-pixel hologram with nanometer resolution in lithium niobate crystals, capable of performing advanced processing tasks.

View Article and Find Full Text PDF

We report the successful fabrication of high-aspect-ratio lithium niobate (LN) nanostructures by using femtosecond-laser-assisted chemical etching. In this technique, a 1 kHz femtosecond laser is first used to induce local modifications inside the LN crystal. Then, selective chemical wet etching is conducted using a buffered oxide etch (BOE) solution.

View Article and Find Full Text PDF

IL-10 regulatory B cells (Bregs) play a significant role in cancer immunotherapy and their presence is an indicator of negative outcome. We found that PPARδ is significantly upregulated in tumor-induced IL-10 Bregs with a phenotype of CD19CD24IgDCD38 or CD19CD24IgDCD38 in both mice and humans, and the level of PPARδ expression was correlated with their potential to produce IL-10 and to inhibit T cell activation. Genetic inactivation of PPARδ in B cells impaired the development and function of IL-10 B cells, and treatment with PPARδ inhibitor diminished the induction of IL-10 Bregs by tumor and CD40 engagement.

View Article and Find Full Text PDF

is extensively used for cortisone acetate (CA) biotransformation in industry, but the Δ-dehydrogenation molecular fundamental remains unclear. Herein, the comparative proteome revealed several proteins with the potential role in this reaction, which were mainly involved in lipid or amino acid transport and metabolism, energy production and conversion, steroid degradation, and transporter. The influences of six proteins were further confirmed, where , , , , and showed positive impacts, while exhibited a negative effect.

View Article and Find Full Text PDF

Algicidal bacteria can inhibit the growth of algae or lyse algal cells, thus playing roles in shaping aquatic microbial communities and maintaining the functions of aquatic ecosystems. Nevertheless, our understanding of their diversities and distributions remains limited. In this study, we collected water samples from 17 freshwater sites in 14 cities in China and screened a total of 77 algicidal bacterial strains using several prokaryotic cyanobacteria and eukaryotic algae as target strains.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are studying special materials called self-healing materials (SHMs) that can fix themselves, especially in electronics and robots.
  • They found a way to combine MXenes and graphene oxide (GO) to create devices that can heal from damage when exposed to moisture.
  • This new method has led to the creation of useful devices like sensors and generators that stay soft and can repair themselves, which could help make smaller and smarter electronics and robots in the future.
View Article and Find Full Text PDF

Graphene oxide (GO) films with natural "quantum-confined-superfluidics" (QSF) channels for moisture actuation have emerged as a smart material for actuators and soft robots. However, programming the deformation of GO by engineering QSF nanochannels around 1 nm is extremely challenging. Herein, we report the reconfigurable, reversible, and redefinable deformation of GO under moisture actuation by tailoring QSF channels via moisture-assisted strain-induced wrinkling (MSW).

View Article and Find Full Text PDF

Lithium niobate (LiNbO) is viewed as a promising material for optical communications and quantum photonic chips. Recent breakthroughs in LiNbO nanophotonics have considerably boosted the development of high-speed electro-optic modulators, frequency combs and broadband spectrometers. However, the traditional method of electrical poling for ferroelectric domain engineering in optic, acoustic and electronic applications is limited to two-dimensional space and micrometre-scale resolution.

View Article and Find Full Text PDF

Nonlinear holography has recently emerged as a novel tool to reconstruct the encoded information at a new wavelength, which has important applications in optical display and optical encryption. However, this scheme still struggles with low conversion efficiency and ineffective multiplexing. In this work, we demonstrate a quasi-phase-matching (QPM) -division multiplexing holography in a three-dimensional (3D) nonlinear photonic crystal (NPC).

View Article and Find Full Text PDF

Graphene oxide (GO), which has many oxygen functional groups, is a promising candidate for use in moisture-responsive sensors and actuators due to the strong water-GO interaction and the ultrafast transport of water molecules within the stacked GO sheets. In the last 5 years, moisture-responsive actuators based on GO have shown distinct advantages over other stimuli-responsive materials and devices. Particularly, inspired by nature organisms, various moisture-enabled soft robots have been successfully developed via rational assembly of the GO-based actuators.

View Article and Find Full Text PDF

Graphene-based actuators featuring fast and reversible deformation under various external stimuli are promising for soft robotics. However, these bimorph actuators are incapable of complex and programmable 3D deformation, which limits their practical application. Here, inspired from the collective coupling and coordination of living cells, we fabricated a moisture-responsive graphene actuator swarm that has programmable shape-changing capability by programming the SU-8 patterns underneath.

View Article and Find Full Text PDF

Moisture-responsive actuators based on graphene oxide (GO) have attracted intensive research interest in recent years. However, current GO actuators suffer from low mechanical strength. Inspired by the robustness of nacre's structure, moisture-responsive actuators with high mechanical strength and self-healing properties were successfully developed based on GO and cellulose fiber (CF) hybrids.

View Article and Find Full Text PDF

The research interest in wearable electronics has continuously stimulated the development of flexible energy storage systems with high performance and robustness. However, open problems with respect to energy storage efficiency and device integration are still challenging. Here, we demonstrate the laser fabrication of flexible planar supercapacitors based on graphene oxide (GO) and black phosphorus quantum dot (BPQD) nanocomposites.

View Article and Find Full Text PDF
Article Synopsis
  • The study presents an easy method to create flexible graphene-based field effect transistors (FETs) using sunlight to reduce graphene oxide (GO).
  • This environmentally friendly technique requires no complex equipment and allows for the production of FETs with impressive electrical performance, including a high I/I ratio and decent hole mobility.
  • The method also offers post-fabrication capabilities, enabling the integration of graphene devices with pre-existing electrode structures for flexible microelectronics.
View Article and Find Full Text PDF