Publications by authors named "Jianan Hui"

In the realm of wearable technology, strategically placing sensors at various body locations enhances the detection of diverse physiological indicators crucial for remote medical care. However, current devices often focus on a single body part for specific physical parameters, which hinders the seamless integration of sensors across multiple body parts and necessitates redesign for new detection capabilities. Here, we propose a modular, reconfigurable circuit assembly method that can be adaptable for multiple body locations to construct the body net.

View Article and Find Full Text PDF

In recent years, wearable sensors have revolutionized health monitoring by enabling continuous, real-time tracking of human health and performance. These noninvasive devices are usually designed to monitor human physical state and biochemical markers. However, enhancing their functionalities often demands intricate customization by designers and additional expenses for users.

View Article and Find Full Text PDF

Signal transduction mediated by epidermal growth factor receptor (EGFR) gene affects the proliferation, invasion, metastasis, and angiogenesis of tumor cells. In particular, non-small cell lung cancer (NSCLC) patients with increased in copy number of EGFR gene are often sensitive to tyrosine kinase inhibitors. Despite being the standard for detecting EGFR amplification in the clinic, fluorescence in situ hybridization (FISH) traditionally involves repetitive and complex benchtop procedures that are not only time consuming but also require well-trained personnel.

View Article and Find Full Text PDF

An organ-on-a-chip is a device that combines micro-manufacturing and tissue engineering to replicate the critical physiological environment and functions of the human organs. Therefore, it can be used to predict drug responses and environmental effects on organs. Microfluidic technology can control micro-scale reagents with high precision.

View Article and Find Full Text PDF

The gingival epithelium-capillary interface is a unique feature of periodontal soft tissue, preserving periodontal tissue homeostasis and preventing microorganism and toxic substances from entering the subepithelial tissue. However, the function of the interface is disturbed in periodontitis, and mechanisms of the breakdown of the interface are incompletely understood. To address these limitations, we developed a microfluidic epithelium-capillary barrier with a thin culture membrane (10 μm) that closely mimics the in vivo gingival epithelial barrier with an immune micro-environment.

View Article and Find Full Text PDF

Background: The combination of ivosidenib - an inhibitor of mutant isocitrate dehydrogenase 1 (IDH1) - and azacitidine showed encouraging clinical activity in a phase 1b trial involving patients with newly diagnosed -mutated acute myeloid leukemia.

Methods: In this phase 3 trial, we randomly assigned patients with newly diagnosed -mutated acute myeloid leukemia who were ineligible for intensive induction chemotherapy to receive oral ivosidenib (500 mg once daily) and subcutaneous or intravenous azacitidine (75 mg per square meter of body-surface area for 7 days in 28-day cycles) or to receive matched placebo and azacitidine. The primary end point was event-free survival, defined as the time from randomization until treatment failure (i.

View Article and Find Full Text PDF

Targeted therapies tend to have biomarker defined subgroups that derive differential efficacy from treatments. This article corrects three prevailing oversights in stratified analyses comparing treatments in randomized controlled trials (RCTs) with binary and time-to-event outcomes: 1.Using efficacy measures such as odds ratio (OR) and hazard ratio (HR) can make a prognostic biomarker appear predictive, targeting wrong patients, because the inference is affected by a confounding/covert factor even with ignorable treatment assignment in an RCT.

View Article and Find Full Text PDF

In recent years, nanopore technology has become increasingly important in the field of life science and biomedical research. By embedding a nano-scale hole in a thin membrane and measuring the electrochemical signal, nanopore technology can be used to investigate the nucleic acids and other biomacromolecules. One of the most successful applications of nanopore technology, the Oxford Nanopore Technology, marks the beginning of the fourth generation of gene sequencing technology.

View Article and Find Full Text PDF

Aims: To evaluate the safety, pharmacokinetics and pharmacodynamics of single- and multiple-rising doses (MRDs) of BI 705564 and establish proof of mechanism.

Methods: BI 705564 was studied in 2 placebo-controlled, Phase I clinical trials testing single-rising doses (1-160 mg) and MRDs (1-80 mg) of BI 705564 over 14 days in healthy male volunteers. Blood samples were analysed for BI 705564 plasma concentration, Bruton's tyrosine kinase (BTK) target occupancy (TO) and CD69 expression in B cells stimulated ex vivo.

View Article and Find Full Text PDF

For pediatric drug development, the clinical effectiveness of the study medication for the adult population has already been demonstrated. Given the fact that it is usually not feasible to enroll a large number of pediatric patients, appropriately leveraging historical adult data into pediatric evaluation may be critical to success of pediatric drug development. In this manuscript, we propose a new empirical Bayesian approach, profile Bayesian estimation, to dynamically borrow adult information to the evaluation of treatment effect in pediatric patients.

View Article and Find Full Text PDF

Three-dimensional (3D) cell migrations are regulated by force interactions between cells and a 3D extracellular matrix (ECM). Mapping the 3D traction force generated by cells on the surrounding ECM with controlled confinement and contact area will be useful in understanding cell migration. In this study, double-sided micropost arrays were fabricated.

View Article and Find Full Text PDF

Understanding cell migration in a 3D microenvironment is essential as most cells encounter complex 3D extracellular matrix (ECM) Although interactions between cells and ECM have been studied previously on 2D surfaces, cell migration studies in 3D environment are still limited. To investigate cell migration under various degrees of confinements and coating conditions, 3D platforms with micropost arrays and controlled fibronectin (FN) protein coating were developed. MC3T3-E1 cells spread and contacted the top surface of microposts if FN was coated on top.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionsg0af9hn7utefr1e4ca0i8t32skbi7hb): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once