Based on the characteristics of polycations of chitosan and glucoamylase, which are oppositely charged, they were successfully alternatingly deposited onto the surface of aldehyde-modified Fe3O4 nanoparticles by using a layer-by-layer ion exchange method to form magnetic carriers to construct multilayer films (designated as Fe3O4@(CS/GA)n). The (CS/GA)n film systems were endowed with the pH-dependent properties of chitosan as well as the catalytic activity of glucoamylase. The changes in weight loss and surface chemistry, morphology, and magnetic sensitivity were monitored and verified by UV/Vis spectroscopy, zeta potential, TEM, and a vibrating sample magnetometer.
View Article and Find Full Text PDFWe report a facile fabrication of a host-metal-guest coordination-bonding system in a mesostructured Fe3O4/chitosan nanoparticle that can act as a pH-responsive drug-delivery system. The mesostructured Fe3O4/chitosan was synthesized by a solvothermal approach with iron(III) chloride hexahydrate as a precursor, ethylene glycol as a reducing agent, ammonium acetate as a porogen, and chitosan as a surface-modification agent. Subsequently, doxorubicin (DOX), acting as a model drug (guest), was loaded onto the mesostructured Fe3O4/chitosan nanoparticles, with chitosan acting as a host molecule to form the NH2-Zn(II)-DOX coordination architecture.
View Article and Find Full Text PDFAccumulation of microtubule-associated protein tau has been observed in the brain of aging and tauopathies. Tau was observed in microglia, but its role is not illustrated. By immunofluorescence staining and the fractal dimension value assay in the present study, we observed that microglia were activated in the brains of rats and mice during aging, simultaneously, the immunoreactivities of total tau and the phosphorylated tau were significantly enhanced in the activated microglia.
View Article and Find Full Text PDFPatients with diabetes in the aging population are at high risk of Alzheimer's disease (AD), and reduction of sirtuin 1 (SIRT1) activity occurs simultaneously with the accumulation of hyperphosphorylated tau in the AD-affected brain. It is not clear, however, whether SIRT1 is a suitable molecular target for the treatment of AD. Here, we employed a rat model of brain insulin resistance with intracerebroventricular injection of streptozotocin (ICV-STZ; 3 mg/kg, twice with an interval of 48 h).
View Article and Find Full Text PDFAlzheimer's disease (AD) is characterized by the cholinergic neurons loss and impairments of learning and memory. Scopolamine is common used to imitate AD pathological features and also causes an obvious oxidative stress. In this study, we found that intraperitoneal administration of supplementary acetyl-L-carnitine partially reverses the learning and memory defects induced by scopolamine.
View Article and Find Full Text PDFThe intracellular accumulation of hyperphosphorylated tau plays a crucial role in neurodegeneration of Alzheimer's disease (AD), but the mechanism is not fully understood. From the observation that tau hyperphosphorylation renders cells more resistant to chemically-induced cell apoptosis, we have proposed that tau-involved apoptotic abortion may be the trigger of neurodegeneration. Here, we further studied whether this phenomenon is also applicable for the cell death induced by constitutively expressed factors, such as death-associated protein kinase 1 (DAPK1).
View Article and Find Full Text PDFCholinergic dysfunction plays a crucial role in the memory deterioration of Alzheimer's disease, but the molecular mechanism is not fully understood. By employing a widely recognized cholinergic dysfunction rat model that was produced by intraperitoneal injection of scopolamine, we investigated the mechanisms underlying scopolamine-induced memory deficits. We found that scopolamine caused spatial learning and memory deficits that involved activation of glycogen synthase kinase-3β (GSK-3β) and impairments of dendrite arborization and spine formation/maturation associated with alterations of AMPAR, Homer1, and CREB.
View Article and Find Full Text PDFDeficits of protein phosphatase-2A (PP2A) play a crucial role in tau hyperphosphorylation, amyloid overproduction, and synaptic suppression of Alzheimer's disease (AD), in which PP2A is inactivated by the endogenously increased inhibitory protein, namely inhibitor-2 of PP2A (I2(PP2A)). Therefore, in vivo silencing I2(PP2A) may rescue PP2A and mitigate AD neurodegeneration. By infusion of lentivirus-shRNA targeting I2(PP2A) (LV-siI2(PP2A)) into hippocampus and frontal cortex of 11-month-old tg2576 mice, we demonstrated that expression of LV-siI2(PP2A) decreased remarkably the elevated I2(PP2A) in both mRNA and protein levels.
View Article and Find Full Text PDFAlzheimer's disease (AD), an age-related neurodegenerative disorder with progressive cognition deficit, is characterized by extracellular senile plaques (SP) of aggregated β-amyloid (Aβ) and intracellular neurofibrillary tangles, mainly containing the hyperphosphorylated microtubule-associated protein tau. Multiple factors contribute to the etiology of AD in terms of initiation and progression. Melatonin is an endogenously produced hormone in the brain and decreases during aging and in patients with AD.
View Article and Find Full Text PDFGlycogen synthase kinase-3 beta (GSK-3β) dysfunction may play an essential role in the pathogenesis of psychiatric, metabolic, neurodegenerative diseases, in which oxidative stress exists concurrently. Some studies have shown that GSK-3β activity is up-regulated under oxidative stress. This study evaluated how oxidative stress regulates GSK-3β activity in human embryonic kidney 293 (HEK293)/Tau cells treated with hydrogen peroxide (H₂O₂).
View Article and Find Full Text PDFThe activity of protein phosptase-2A (PP2A) is significantly decreased in the brains of Alzheimer's disease (AD) patients, but the upstream effectors for regulating PP2A activity are not fully understood. Nicotinamide mononucleotide adenylyltransferase 2 (Nmnat2) is a key enzyme involved in energy metabolism and its gene expression level is reduced in AD brain specimens. Whether Nmnat2 can activate PP2A deserves to be explored.
View Article and Find Full Text PDFCNS Neurol Disord Drug Targets
May 2013
One of the neuropathological hallmarks of Alzheimer's disease (AD) is the occurrence of neurofibrillary tangles (NFTs) that are composed of abnormally hyperphosphorylated microtubule-associated protein tau. Abnormal tau hyperphosphorylation is mainly induced due to the imbalance between protein kinases and phosphatases. In the tanglerich subregions of the hippocampus and parietal cortex in the brain of AD patients, the levels of the phosphorylationdependent protein peptidyl-prolyl cis-trans isomerase (Pin1) were found to be low.
View Article and Find Full Text PDFProtein phosphatase-2A (PP2A), an important phosphatase in dephosphorylating tau and preserving synapse, is significantly suppressed in Alzheimer's disease (AD), but the mechanism is not well understood. Here, we studied whether phosphotyrosyl phosphatase activator (PTPA) could activate PP2A by reducing its inhibitory phosphorylation at tyrosine 307 (P-PP2AC). We found that overexpression of PTPA activated PP2A by decreasing the level of P-PP2AC with reduced phosphorylation of tau, while knockdown of PTPA inhibited PP2A by increasing the level of P-PP2AC with enhanced tau phosphorylation.
View Article and Find Full Text PDFThe current therapies for Alzheimer's disease (AD) are merely palliative that cannot arrest the pathologic progression of the disease. Therefore, it is critical to develop treatments that can target the disease-modifying molecule(s). In the present study, we found that treatment of tg2576 mice with melatonin from 4-8 months of age did not improve the pathology or behavioral performance of the mice.
View Article and Find Full Text PDFZinc ions highly concentrate in hippocampus and play a key role in modulating spatial learning and memory. At a time when dietary fortification and supplementation of zinc have increased the zinc consuming level especially in the youth, the toxicity of zinc overdose on brain function was underestimated. In the present study, weaning ICR mice were given water supplemented with 15 ppm Zn (low dose), 60 ppm Zn (high dose) or normal lab water for 3 months, the behavior and brain zinc homeostasis were tested.
View Article and Find Full Text PDFThe nuclear protein I2(PP2A)/SET, an endogenous inhibitor of protein phosphatase-2A (PP2A), is increased and translocated to the cytoplasm in the neurons of Alzheimer's disease (AD) brains, and PP2A activity in cytoplasm is compromised. However, it is not fully understood how SET is retained in the cytoplasm. By generating a phosphorylation site-specific antibody, we found in the present study that SET is phosphorylated at Ser9, by which it is accumulated in the cytoplasm of the AD brains.
View Article and Find Full Text PDFHyperhomocysteinemia (Hhcy) may induce memory deficits with β-amyloid (Aβ) accumulation and tau hyperphosphorylation. Simultaneous supplement of folate and vitamin B12 partially restored the plasma homocysteine level and attenuated tau hyperphosphorylation, Aβ accumulation and memory impairments induced by Hhcy. However, folate and vitamin B12 treatment have no effects on Hhcy which has the methylenetetrahydrofolate reductase genotype mutation.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most prevalent type of dementia in elderly people. There are decreased melatonin levels in the serum of AD patients, and melatonin supplements are able to reverse AD pathology and memory deficits in many animal experiments and clinical trials. However, the underlying mechanism regarding how melatonin rescues the AD-like memory/synaptic disorder remains unknown.
View Article and Find Full Text PDFThe activity of protein phosphatase (PP) 2A is downregulated and promotes the hyperphosphorylation of tau in the brains of Alzheimer's disease (AD), but the mechanism for PP2A inactivation has not been elucidated. We have reported that PP2A phosphorylation at tyrosine 307 (Y307) is involved in PP2A inactivation. Here, we further studied the upstream mechanisms for PP2A phosphorylation and inactivation.
View Article and Find Full Text PDFThe neural dysfunction in Alzheimer's disease (AD) could arise from endoplasmic reticulum (ER) stress and deficits of the unfolded protein response (UPR). To explore whether tau hyperphosphorylation, a hallmark of AD brain pathologies, plays a role in ER stress-induced alterations of cell viability, we established cell lines with stable expression of human tau (HEK293/tau) or the vector (HEK293/vec) and treated the cells with thapsigargin (TG), an ER stress inducer. We observed that the HEK293/tau cells were more resistant than the HEK293/vec cells to the TG-induced apoptosis, importantly, a time dependent increase of tau phosphorylation at Thr205 and Thr231 sites was positively correlated with the inhibition of apoptosis.
View Article and Find Full Text PDFNeuromolecular Med
December 2012
The hyperphosphorylated tau is a major protein component of neurofibrillary tangle, which is one of hallmarks of Alzheimer's disease (AD). While the level of methylglyoxal (MG) is significantly increased in the AD brains, the role of MG in tau phosphorylation is still not reported. Here, we found that MG could induce tau hyperphosphorylation at multiple AD-related sites in neuroblastoma 2a cells under maintaining normal cell viability.
View Article and Find Full Text PDFNerve growth factor (NGF) is a critical secreted protein that plays an important role in development, survival, and function of the mammalian nervous system. Previously reports suggest that endogenous NGF is essential for the hippocampal plasticity/memory and NGF deprivation induces the impairment of hippocampus-related memory and synaptic plasticity. However, whether exogenous supplement of NGF could promote the hippocampus-dependent synaptic plasticity/memory and the possible underlying mechanisms are not clear.
View Article and Find Full Text PDFProtein phosphatase-2A (PP2A) activity is significantly suppressed in Alzheimer's disease. We have reported that glycogen synthase kinase-3β (GSK-3β) inhibits PP2A via upregulating the phosphorylation of PP2A catalytic subunit (PP2A(C)). Here we studied the effects of GSK-3β on the inhibitory demethylation of PP2A at leucine-309 (dmL309-PP2A(C)).
View Article and Find Full Text PDFOne of the earliest neuropathological changes in Alzheimer disease (AD) is the accumulation of astrocytes at sites of β-amyloid (Aβ) deposits, but the cause of this cellular response is unclear. As the activity of protein phosphatase 2A (PP2A) is significantly decreased in the AD brains, we studied the role of PP2A in astrocytes migration. We observed unexpectedly that PP2A activity associated with glial fibrillary acidic protein, an astrocyte marker, was significantly upregulated in tg2576 mice, demonstrated by an increased enzyme activity, a decreased demethylation at leucine-309 (DM-PP2Ac), and a decreased phosphorylation at tyrosine-307 of PP2A (pY307-PP2Ac).
View Article and Find Full Text PDFMicrotubule associated protein tau is a phosphoprotein which potentially has 80 serine/threonine and 5 tyrosine phosphorylation sites. Normal brain tau contains 2-3 moles of phosphate per mole of the protein. In Alzheimer's disease brain, tau is abnormally hyperphosphorylated to a stoichiometry of at least three-fold greater than normal tau, and in this altered state it is aggregated into paired helical filaments forming neurofibrillary tangles, a histopathological hallmark of the disease.
View Article and Find Full Text PDF