Publications by authors named "JianJun Yu"

The molecular chaperone heat shock protein 90 (HSP90) facilitates the appropriate folding of various oncogenic proteins and is necessary for the survival of some cancer cells. HSP90 is therefore an attractive drug target, but the efficacy of HSP90 inhibitor may be limited by HSP90 inhibition induced feedback mechanisms. Through pooled RNA interference screens, we identified that heat shock factor 1(HSF1) is a sensitizer of HSP90 inhibitor.

View Article and Find Full Text PDF

We experimentally investigate digital intra-channel nonlinear impairment compensation and inter-channel crosstalk suppression for 4 × 160.8-Gb/s wavelength division multiplexing (WDM) polarization division multiplexing quadrature phase shift keying (PDM-QPSK) transmission over 1300-km single-mode fiber-28 (SMF-28) on a 50-GHz grid with the spectral efficiency of 3.21b/s/Hz, adopting simplified heterodyne coherent detection.

View Article and Find Full Text PDF

Objective: The purpose of this article was to study the management of total urinary tract calculi using holmium laser minimally invasive techniques.

Background Data: It is rare for patients to present kidney stones, ureteral stones, and bladder stones simultaneously, and their treatment is considered to be complicated and difficult, specifically by minimally invasive techniques.

Methods: We collected seven cases of total urinary tract calculi from May 2007 to September 2012.

View Article and Find Full Text PDF

We experimentally demonstrate heterodyne coherent detection of 8 × 112-Gb/s ultra-density wavelength-division-multiplexing (WDM) polarization-division-multiplexing quadrature-phase-shift-keying (PDM-QPSK) signal after 1120-km single-mode fiber-28 (SMF-28) transmission. The spectral efficiency (SE) is 4b/s/Hz. It is the first time to realize WDM signal transmission with high SE by adopting heterodyne coherent detection.

View Article and Find Full Text PDF

In this paper, a transform domain processing (TDP) based channel estimation method for orthogonal frequency-division multiplexing (OFDM) Radio-over-Fiber (RoF) systems is proposed. Theoretically investigation shows that TDP can greatly reduce the number of required training symbols. An 8 x 4.

View Article and Find Full Text PDF

We propose 9-ary quadrature amplitude modulation (9-QAM) data recovery for polarization multiplexing-quadrature phase shift keying (PM-QPSK) signal in presence of strong filtering to approach Nyquist bandwidth. The decision-directed least radius distance (DD-LRD) algorithm for blind equalization is used for 9-QAM recovery and intersymbol interference (ISI) compression. It shows the robustness under strong filtering to recover 9-QAM signal rather than QPSK.

View Article and Find Full Text PDF

It has been demonstrated that the glutathione S-transferase (GST) superfamily helps remove carcinogens from the body and thus might be associated with prostate cancer risk. In recent years, GSTT1 polymorphism has been extensively studied as a potential prostate cancer risk factor; however, the results are inconsistent. To investigate the association between GSTT1 and prostate cancer, we conducted a meta-analysis of 33 studies with 6,697 prostate patients and 7,643 controls.

View Article and Find Full Text PDF

We experimentally investigate the interference in multiple-input multiple-output (MIMO) wireless transmission by adjusting the relative locations of horn antennas (HAs) in a 100 GHz optical wireless integration system, which can deliver a 50 Gb/s polarization-division-multiplexing quadrature-phase-shift-keying signal over 80 km single-mode fiber-28 and a 2×2 MIMO wireless link. For the parallel 2×2 MIMO wireless link, each receiver HA can only get wireless power from the corresponding transmitter HA, while for the crossover ones, the receiver HA can get wireless power from two transmitter HAs. At the wireless receiver, polarization demultiplexing is realized by the constant modulus algorithm (CMA) in the digital-signal-processing part.

View Article and Find Full Text PDF

We propose and experimentally demonstrate a simple scheme to generate flattened optical subcarriers at low insertion loss using only phase modulators driven by fundamental frequency sinusoidal sources. A small frequency offset is introduced in the second stage to obtain phase-insensitive, stable, and flattened subcarriers. Theoretical and numerical analysis with experimental results are carried out on this scheme.

View Article and Find Full Text PDF

We propose and experimentally demonstrate a coherent receiver based on simplified heterodyne detection for 100 G polarization division multiplexing (PDM) signal. Compared to the conventional homodyne detection, only two balanced photo detectors (PDs) and two analog-to-digital converters (ADCs) are used in the simplified heterodyne detection. Compared to the conventional hybrid for homodyne detection, the polarization-diversity hybrid here is also simplified.

View Article and Find Full Text PDF

We propose and experimentally demonstrate a novel full-duplex bi-directional subcarrier multiplexing (SCM)-wavelength division multiplexing (WDM) visible light communication (VLC) system based on commercially available red-green-blue (RGB) light emitting diode (LED) and phosphor-based LED (P-LED) with 575-Mb/s downstream and 225-Mb/s upstream transmission, employing various modulation orders of quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM). For the downlink, red and green colors/wavelengths are assigned to carry useful information, while blue chip is just kept lighting to maintain the white color illumination, and for the uplink, the low-cost P-LED is implemented. In this demonstration, pre-equalization and post-equalization are also adopted to compensate the severe frequency response of LEDs.

View Article and Find Full Text PDF

We propose a modified localized carrier distribution scheme based on multi-tone generation to generate 60 GHz mm-wave for different wireless users and it improves the carrier utilization efficiency by 33.3%. The principle of multiple-user discrete Fourier transform spread optical orthogonal frequency-division multiplexing (DFT-S OFDM) Radio-over-fiber (RoF) system is presented.

View Article and Find Full Text PDF

Relative to homodyne coherent detection, heterodyne coherent detection has simple architecture because no 90° hybrid and only half number of photodiodes and analog-to-digital convertor (ADC) chips are required. We experimentally demonstrate that the architecture of heterodyne coherent receivers can be further simplified. When the frequency offset is one half of the channel frequency spacing, one local oscillator (LO) laser can be used for two neighboring wavelength-division-multiplexing (WDM) channels, and therefore the number of LO lasers can be reduced into half compared to homodyne detection.

View Article and Find Full Text PDF

We propose and experimentally demonstrate an improved scheme to generate optical frequency-locked multi-channel multi-carriers (MCMC), using a gain-independent multi-channel recirculating frequency shifter (MC-RFS) loop based on single sideband (SSB) modulation. We re-build the RFS structure with better performance. By using MC-RFS loop, we can generate N-channel subcarriers each round trip without interference.

View Article and Find Full Text PDF

We experimentally demonstrated the transmission of 40 × 433.6-Gb/s Nyquist wavelength-division-multiplexing (N-WDM) optical time-division-multiplexing (OTDM) over 2800-km single-mode fiber (SMF)-28 with Erbium-doped fiber amplifier (EDFA)-only amplification, adopting polarization-division-multiplexing carrier-suppressed return-to-zero quadrature-phase-shift-keying (PDM-CSRZ-QPSK) modulation as well as post filter and 1-bit maximum likelihood sequence estimation (MLSE). Each channel occupies 100 GHz, yielding a spectral efficiency of 4.

View Article and Find Full Text PDF

We experimentally demonstrate a seamlessly integrated fiber-wireless system that delivers a 108  Gb/s signal through 80 km fiber and 1 m wireless transport over free space at 100 GHz adopting polarization-division-multiplexing quadrature-phase-shift-keying (PDM-QPSK) modulation and heterodyning coherent detection. The X- and Y-polarization components of the optical PDM-QPSK baseband signal are simultaneously upconverted to 100 GHz wireless carrier by optical polarization-diversity heterodyne beating, and then independently transmitted and received by two pairs of transmitter and receiver antennas, which form a 2×2 multiple-input multiple-output wireless link. At the wireless receiver, two-stage downconversion is performed firstly in the analog domain based on balanced mixer and sinusoidal radio frequency signal, and then in the digital domain based on digital signal processing (DSP).

View Article and Find Full Text PDF

This paper proposes a novel secure communication technique using constellation masking for applications in orthogonal frequency division multiplexing passive optical network (OFDM-PON). The constellation masking is applied both on each subcarrier and among different subcarriers. The Arnold mapping is utilized as the parameter function for the mask factors.

View Article and Find Full Text PDF

We experimentally demonstrated the seamless integration of 57.2-Gb/s signal wireline transmission and 100-GHz wireless delivery adopting polarization-division-multiplexing quadrature-phase-shift-keying (PDM-QPSK) modulation with 400-km single-mode fiber-28 (SMF-28) transmission and 1-m wireless delivery. The X- and Y-polarization components of optical PDM-QPSK baseband signal are simultaneously up-converted to 100 GHz by optical polarization-diversity heterodyne beating, and then independently transmitted and received by two pairs of transmitter and receiver antennas, which make up a 2x2 multiple-input multiple-output (MIMO) wireless link based on microwave polarization multiplexing.

View Article and Find Full Text PDF

We have proposed a novel WDM Terabit access network based on pre-DFT orthogonal frequency division multiplexing (OFDM) and single photonic crystal fiber (PCF) supercontinuum (SC) light source. Duplex access with source-free ONUs is realized in this architecture. The single SC source can be shared with a number of ONUs and simplifies the network configuration, which can allow the realization of high-reliability as well as low-cost.

View Article and Find Full Text PDF

We propose and experimentally demonstrate a novel scheme to generate multichannel optical frequency-locked multicarrier by using multichannel recirculating frequency shifter (MC-RFS) loop. By using MC-RFS loop, we can generate N channels subcarriers each round trip without interference. These subcarriers of each channel are stable and frequency-locked, which can be used for a multichannel WDM source.

View Article and Find Full Text PDF

Background: Minimally invasive video-assisted thyroidectomy (MIVAT), the modified Miccoli's thyroid surgery, is the most widespread minimally invasive technique and has been widely used for treatment of thyroid disease. This study aimed to verify the potential benefits of the modified Miccoli's thyroid surgery, determine the feasibility of the MIVAT for early-stage differential thyroid carcinoma and evaluate the likelihood of the surgical method as a standard operation for early malignant thyroid carcinoma.

Methods: A total of 135 patients were retrospectively compared which included two groups of patients: the first group underwent the conventional thyroidectomy; the other group underwent MIVAT.

View Article and Find Full Text PDF

Background: Plasma cell mastitis is distinct from the common form of mastitis and clinically resembles breast carcinoma. The lesion occurs in non-lactating young women, and the incidence rate is rising. Surgical resection is the main treatment, but cannot prevent recurrence of the disease.

View Article and Find Full Text PDF

This paper proposes a novel none pilot-assisted orthogonal frequency division multiplexing (OFDM) technology based on multi-differential amplitude phase shift keying (mDAPSK) for optical OFDM system. It doesn't require any bandwidth-consuming pilot tones or training sequence for channel estimation due to the differential detection during demodulation. In the experiment, a 41.

View Article and Find Full Text PDF

We propose and experimentally demonstrate a novel scheme to generate optical frequency-locked multi-channel multi-carriers (MCMC), using a recirculating frequency shifter (RFS) loop based on multi-wavelength frequency shifting single side band (MWFS-SSB) modulation. In this scheme, optical subcarriers with multiple wavelengths can be generated each round. Furthermore, the generated MCMC are frequency- and phase-locked within each channel, and therefore can be effectively used for WDM superchannel.

View Article and Find Full Text PDF

Due to its relative low baud rate as well as simple and cost-efficient implementation, dual-carrier polarization-division-multiplexing 16-ary quadrature amplitude modulation (PDM-16QAM) is a promising candidate for the next generation optical systems and networks at 400Gb/s per channel. The co-polarized dual-pump scheme, based on four-wave mixing (FWM) in a 1-km high nonlinear fiber (HNLF), can realize the all-optical wavelength conversion (AOWC) of the dual-carrier PDM-16QAM signal with spectral non-inversion and polarization insensitivity. We first experimentally demonstrated AOWC of the 544-Gbit/s dual-carrier PDM-16QAM signal based on the co-polarized dual-pump scheme.

View Article and Find Full Text PDF