Free Radic Biol Med
January 2025
Mitochondria, commonly referred to as "energy factories"of cells, play a crucial role in the function and survival of cardiomyocytes. However, as research on cardiac fibrosis has advanced, mitochondrial dysfunction(including changes in energy metabolism, calcium ion imbalance, increased oxidative stress, and apoptosis)is now recognized as a significant pathophysiological pathway involved in cardiac remodeling and progression, which also negatively affects the function and structure of the heart. In recent years, research focusing on targeting mitochondria has gained significant attention, offering new approaches for treating cardiac fibrosis.
View Article and Find Full Text PDFMore than half of the patients with type II diabetes mellitus (T2D) develop diabetic cardiomyopathy (DCM). Glycemic control alone cannot effectively prevent or alleviate DCM. Herein, we concentrated on the variations in levels of metabolites between DCM and T2D patients without cardiomyopathy phenotype.
View Article and Find Full Text PDFIn the process of cardiac fibrosis, the balance between the Wnt/β-catenin signalling pathway and Wnt inhibitory factor genes plays an important role. Secreted frizzled-related protein 3 (sFRP3), a Wnt inhibitory factor, has been linked to epigenetic mechanisms. However, the underlying role of epigenetic regulation of sFRP3, which is crucial in fibroblast proliferation and migration, in cardiac fibrosis have not been elucidated.
View Article and Find Full Text PDFUnlabelled: Increasing evidence indicates that Calumenin (CALU), which is localized in the endoplasmic reticulum, is significantly associated with tumor progression. However, the effect of CALU on patients with clear cell renal cell carcinoma (ccRCC) is unknown. By integrating multi-omics data and molecular biology experiments, we found that CALU expression was significantly increased in tumors compared with normal tissues, and the pathological grade and prognosis of patients were correlated with CALU expression.
View Article and Find Full Text PDFNotch signaling activation drives an endothelial-to-mesenchymal transition (EndMT) critical for heart development, although evidence suggests that the reprogramming of endothelial cell metabolism can regulate endothelial function independent of canonical cell signaling. Herein, we investigated the crosstalk between Notch signaling and metabolic reprogramming in the EndMT process. Biochemically, we find that the NOTCH1 intracellular domain (NICD1) localizes to endothelial cell mitochondria, where it interacts with and activates the complex to enhance mitochondrial metabolism.
View Article and Find Full Text PDFBiomed Pharmacother
December 2024
Trends Pharmacol Sci
October 2023
N6-methyladenosine (m6A) modifications are modulated by m6A methyltransferases, m6A demethylases, and m6A-binding proteins. The dynamic and reversible patterns of m6A modification control cell fate programming by regulating RNA splicing, translation, and decay. Emerging evidence demonstrates that m6A modification of coding and noncoding RNAs exerts crucial effects that influence the pathogenesis of diabetic microvascular complications that include diabetic cardiomyopathy, diabetic nephropathy, diabetic retinopathy, diabetic neuropathy, and diabetic dermatosis.
View Article and Find Full Text PDFMortality rates due to lung cancer are high worldwide. Although PD-1 and PD-L1 immune checkpoint inhibitors boost the survival of patients with non-small-cell lung cancer (NSCLC), resistance often arises. The Warburg Effect, which causes lactate build-up and potential lysine-lactylation (Kla), links immune dysfunction to tumor metabolism.
View Article and Find Full Text PDFCardiovascular disease is currently the number one cause of death endangering human health. There is currently a large body of research showing that the development of cardiovascular disease and its complications is often accompanied by inflammatory processes. In recent years, epitranscriptional modifications have been shown to be involved in regulating the pathophysiological development of inflammation in cardiovascular diseases, with 6-methyladenine being one of the most common RNA transcriptional modifications.
View Article and Find Full Text PDFCardiac fibrosis is a major public health problem worldwide, with high morbidity and mortality, affecting almost all patients with heart disease worldwide. It is characterized by fibroblast activation, abnormal proliferation, excessive deposition, and abnormal distribution of extracellular matrix (ECM) proteins. The maladaptive process of cardiac fibrosis is complex and often involves multiple mechanisms.
View Article and Find Full Text PDFKetogenic diet (KD) alleviates refractory epilepsy and reduces seizures in children. However, the metabolic/cell biologic mechanisms by which the KD exerts its antiepileptic efficacy remain elusive. Herein, we report that KD-produced β-hydroxybutyric acid (BHB) augments brain gamma-aminobutyric acid (GABA) and the GABA/glutamate ratio to inhibit epilepsy.
View Article and Find Full Text PDFCardiac fibrosis is a critical pathophysiological process that occurs with diverse types of cardiac injury. Lipids are the most important bioenergy substrates for maintaining optimal heart performance and act as second messengers to transduce signals within cardiac cells. However, lipid metabolism reprogramming is a double-edged sword in the regulation of cardiomyocyte homeostasis and heart function.
View Article and Find Full Text PDFCardiac fibroblasts play a pivotal role in cardiac fibrosis by transformation of fibroblasts into myofibroblasts, which synthesis and secrete a large number of extracellular matrix proteins. Ultimately, this will lead to cardiac wall stiffness and impaired cardiac performance. The epigenetic regulation and fate reprogramming of cardiac fibroblasts has been advanced considerably in recent decades.
View Article and Find Full Text PDFDiabetes Metab Syndr Obes
October 2023
Background: As one of the most frequent complications of type 2 diabetes mellitus (T2DM), diabetic peripheral neuropathy (DPN) shows a profound impact on 50% of patients with symptoms of neuropathic pain, numbness and other paresthesia. No valid serum biomarkers for the prediction of DPN have been identified in the clinic so far. This study is to investigate the potential serum biomarkers for DPN firstly based on H-Nuclear Magnetic Resonance (H-NMR)-based metabolomics technique.
View Article and Find Full Text PDFPrenatal diagnosis of congenital heart disease (CHD) relies primarily on fetal echocardiography conducted at mid-gestational age-the sensitivity of which varies among centers and practitioners. An objective method for early diagnosis is needed. Here, we conducted a case-control study recruiting 103 pregnant women with healthy offspring and 104 cases with CHD offspring, including VSD (42/104), ASD (20/104), and other CHD phenotypes.
View Article and Find Full Text PDFWith the in-depth investigation of cardiac fibrosis, oxidative stress (OS) has been recognized as a significant pathophysiological pathway involved in cardiac remodeling and progression. OS is a condition characterized by the disruption of equilibrium between reactive oxygen species (ROS) produced by the organism and the antioxidant defense system, resulting in adverse effects on the structure and function of the heart. The accumulation of reactive substances beyond cellular thresholds disrupts the normal physiology of both cardiomyocytes and non-cardiomyocytes, leading to OS, inflammation, hypertrophy, and cardiac fibrosis.
View Article and Find Full Text PDFThe tyrosine kinase inhibitor (TKI) Sunitinib is one the therapies approved for advanced renal cell carcinoma. Here, we undertake proteogenomic profiling of 115 tumors from patients with clear cell renal cell carcinoma (ccRCC) undergoing Sunitinib treatment and reveal the molecular basis of differential clinical outcomes with TKI therapy. We find that chromosome 7q gain-induced mTOR signaling activation is associated with poor therapeutic outcomes with Sunitinib treatment, whereas the aristolochic acid signature and VHL mutation synergistically caused enhanced glycolysis is correlated with better prognosis.
View Article and Find Full Text PDF