According to morphological features, tumor-infiltrating B cells (TIL-Bs) can be classified as lympho-myeloid aggregates (LMAs) and tertiary lymphoid structures (TLSs). As a disease with high incidence and mortality, research on esophageal squamous cell carcinoma (ESCC) TIL-Bs is still unclear. Thus, we aimed to investigate the prognostic value and functional involvement of TIL-Bs in ESCC.
View Article and Find Full Text PDFFascin actin-bundling protein 1 (Fascin) is highly expressed in a variety of cancers, including esophageal squamous cell carcinoma (ESCC), working as an important oncogenic protein and promoting the migration and invasion of cancer cells by bundling F-actin to facilitate the formation of filopodia and invadopodia. However, it is not clear how exactly the function of Fascin is regulated by acetylation in cancer cells. Here, in ESCC cells, the histone acetyltransferase KAT8 catalyzed Fascin lysine 41 (K41) acetylation, to inhibit Fascin-mediated F-actin bundling and the formation of filopodia and invadopodia.
View Article and Find Full Text PDFUnderstanding the mechanisms underlying perfluoroalkyl acids (PFAAs) translocation, distribution, and accumulation in wheat-soil ecosystems is essential for agricultural soil pollution control and crop ecological risk assessment. This study systematically investigated the translocation of 13 PFAAs under different iron and nitrogen fertilization conditions in a wheat-soil ecosystem. Short-chain PFAAs including PFBA, PFPeA, PFHxA, and PFBS mostly accumulated in soil solution (10.
View Article and Find Full Text PDFBackground: Increasing evidence indicates that the tumor microenvironment (TME) is a crucial determinant of cancer progression. However, the clinical and pathobiological significance of stromal signatures in the TME, as a complex dynamic entity, is still unclear in esophageal squamous cell carcinoma (ESCC).
Methods: Herein, we used single-cell transcriptome sequencing data, imaging mass cytometry (IMC) and multiplex immunofluorescence staining to characterize the stromal signatures in ESCC and evaluate their prognostic values in this aggressive disease.
Inner coastal wetland ecosystems are generally eutrophic and are often exposed to both salinity stress and Escherichia coli pollution. However, the effects of these stressors on nutrient-cycling and microbial communities are under-researched. Here, we established a vegetated wetland ecosystem in a saline environment to understand the effects of E.
View Article and Find Full Text PDFPer-fluoroalkyl substances (PFASs) have been widely detected in farmland soils and are understood to pose toxicological threats to soil microbiomes and crop safety. Meanwhile, farmland ecosystems have experienced increasing nitrogen loading caused by soil fertilization. Yet it is still unclear how nitrogen additions affect soil's microbial responses to PFASs.
View Article and Find Full Text PDFPer-fluoroalkyl substances (PFASs) have become ubiquitous in farmland ecosystems and pose risks to agricultural safety, and iron is often applied to farmland soils to reduce the availability of pollutants. However, the effects of iron amendment on the availability of PFASs in the soil and on the soil microbiome are not well understood. Here, we investigated the responses of wheat soil containing PFASs to iron addition using a 21-day experiment.
View Article and Find Full Text PDFThe presence of Per-, Poly-fluoroalkyl substances (PFASs) in aquatic ecosystems has drawn broad concerns in the scientific community due to their biological toxicity. However, little has been explored regarding PFASs' removal in phytoplankton-dominated environments. This study aimed to create a simulated bacteria-algae symbiotic ecosystem to observe the potential transportation of PFASs.
View Article and Find Full Text PDFMicrobiomes are vital in promoting nutrient cycling and plant growth in soil ecosystems. However, microbiomes face adverse effects from multiple persistent pollutants, including per- and poly-fluoroalkyl substances (PFASs). PFASs threaten the fertility and health of soil ecosystems, yet the response of microbial community stability and trophic transfer efficiencies to PFASs is still poorly understood.
View Article and Find Full Text PDFThe importance of per-, poly-fluoroalkyl substances (PFASs) effects on riverine microbiomes is receiving increased recognition in the environmental sciences. However, few studies have explored how PFASs affect microbiomes across trophic levels, specifically through predator-prey interactions. This study examined the community profiles of planktonic archaea, bacteria, fungi, algae, protozoa, and metazoa in a semi-industrial and agricultural river alongside their interactions with 15 detected PFASs.
View Article and Find Full Text PDFBackground: We examined the association between the number of resected lymph nodes and survival to determine the optimal lymphadenectomy for thoracic esophageal squamous cell carcinoma (ESCC) patients with negative lymph node.
Methods: We included 1,836 patients from Chinese three high-volumed hospitals with corresponding clinicopathological characters such as gender, age, tumor location, tumor grade and TNM stage of patients. The median follow-up of included patients was 45.
Background: Fascin is crucial for cancer cell filopodium formation and tumor metastasis, and is functionally regulated by post-translational modifications. However, whether and how Fascin is regulated by acetylation remains unclear. This study explored the regulation of Fascin acetylation and its corresponding roles in filopodium formation and tumor metastasis.
View Article and Find Full Text PDFPerfluorinated compounds (PFCs) pose serious threats to aquatic ecosystems, especially their microbial communities. However, little is known about the phylosymbiosis of aquatic fungal and viridiplantae communities in response to PFC accumulation. We quantified the distribution of 14 PFCs in rivers and found that PFBA was dominant in the transition from water to sediment.
View Article and Find Full Text PDFPer-, Poly-fluoroalkyl substances (PFASs) accumulation in benthic environments is mainly determined by material mixing and represents a significant challenge to river remediation. However, less attention has been paid to the effects of sediment distribution on PFASs accumulation, and how PFASs influence microbial community coalescence and biogeochemical processes. In order to identify correlations between PFASs distribution and benthic microbial community functions, we conducted a field study and quantified the ecological constrains of material transportation on benthic microorganisms.
View Article and Find Full Text PDFThe presence of perfluorinated compound (PFC) contamination in riverine ecosystems represents a novel challenge for environmental remediation. However, little attention has been paid to how PFCs affect planktonic microbial community coalescence. Here, the spatial profiles of fourteen PFCs and their contributions to community assembly were determined using field sampling in a natural river confluence.
View Article and Find Full Text PDFThe broad application of perfluoroalkyl acids (PFAAs) has attracted global concern regarding their adverse environmental effects. The possible removal processes of PFAAs in constructed wetlands were excavated and quantified using two typical submerged macrophytes (rooted Potamogeton wrightii and rootless Ceratophyllum demersum). Our results showed that 33.
View Article and Find Full Text PDFBackground: Nodal-skip metastasis (NSM) is found in esophageal squamous cell carcinoma (ESCC), but its prognostic role is controversial. This study aimed to investigate the prognostic value of NSM for thoracic ESCC patients.
Methods: Categorization of NSM was according to the N groupings of Japan Esophagus Society (JES) staging system, which is dependent on tumor location.
Benthic microbes play a crucial role in maintaining the biogeochemical balance of aquatic ecosystems especially the material cycling during plant decomposition. However, those systems in agricultural area are always threatened by agricultural run-off containing a mass of typical pathogenic invader- Escherichia coli. It is therefore vital to clarify the turnover, assembly, and geochemical functions of the E.
View Article and Find Full Text PDFDetermination of the effects of Escherichia coli (E. coli) pollution on agricultural pond ecosystems with vegetation at different life stages is essential for the protection of ecological functions. However, no comprehensive study has yet shown the responses of epiphytic microbial communities to E.
View Article and Find Full Text PDFThe effects of exogenous Escherichia coli on nitrogen cycling (N-cycling) in freshwater remains unclear. Thus, seven ecosystems, six with submerged plants-Potamogeton crispus (PC) and Myriophyllum aquaticum (MA)-and one with no plants were set up. Habitats were assessed before and after E.
View Article and Find Full Text PDFThe ability to tune the surface properties of a polymer film in a simple and effective manner is important for diverse biological, industrial, and environmental applications. In this work, we investigated whether or not the surface free energy of poly(vinyl phenol; PVPh) can be tuned by adjusting the casting solvent and the thermal treatment time, which alters the proportions of intra-and intermolecular hydrogen bonding interactions. Compared to the untreated sample, in tetrahydrofuran (THF) system, the thermal treatment resulted in a lower proportion of intermolecular hydrogen bonds and a concomitant decrease in the surface free energy (from 39.
View Article and Find Full Text PDFAberrant DNA methylation leads to abnormal gene expression, making it a significant regulator in the progression of cancer and leading to the requirement for integration of gene expression with DNA methylation. Here, we identified 120 genes demonstrating an inverse correlation between DNA methylation and mRNA expression in esophageal squamous cell carcinoma (ESCC). Sixteen key genes, such as SIX4, CRABP2, and EHD3, were obtained by filtering 10 datasets and verified in paired ESCC samples by qRT-PCR.
View Article and Find Full Text PDFTo precisely predict the clinical outcome and determine the optimal treatment options for patients with esophageal squamous cell carcinoma (ESCC) remains challenging. Prognostic models based on multiple molecular markers of tumors have been shown to have superiority over the use of single biomarkers. Our previous studies have identified the crucial role of ezrin in ESCC progression, which prompted us to hypothesize that ezrin-associated proteins contribute to the pathobiology of ESCC.
View Article and Find Full Text PDFLysyl oxidase-like 2 (LOXL2), a copper-dependent enzyme of the lysyl oxidase family and its nonsecreted, catalytically dead spliced isoform L2Δ13, enhance cell migration and invasion, stimulate filopodia formation, modulate the expression of cytoskeletal genes, and promote tumor development and metastasis . We previously showed that LOXL2 reorganizes the actin cytoskeleton in esophageal squamous cell carcinoma (ESCC) cells, however, the underlying molecular mechanisms were not identified. Here, using interactome analysis, we identified ezrin (EZR), fascin (FSCN1), heat shock protein beta-1 (HSPB1), and tropomodulin-3 (TMOD3) as actin-binding proteins that associate with cytoplasmic LOXL2, as well as with its L2Δ13 variant.
View Article and Find Full Text PDFBackground: The American Joint Committee on Cancer (AJCC) nodal staging for esophageal squamous cell carcinoma (ESCC) has been defined by the number of metastatic lymph nodes (N system). However, the precise counting of individual positive lymph nodes is difficult and unreliable in some clinical settings, which calls for a more available and reliable system. This study examined the performance of a newly proposed nodal staging category, termed the S system, based on the number of metastatic lymph node stations.
View Article and Find Full Text PDF