IEEE J Biomed Health Inform
March 2014
We propose a feature selection method based on a sequential forward floating selection (SFFS) procedure to improve the performance of a classifier in computerized detection of polyps in CT colonography (CTC). The feature selection method is coupled with a nonlinear support vector machine (SVM) classifier. Unlike the conventional linear method based on Wilks' lambda, the proposed method selected the most relevant features that would maximize the area under the receiver operating characteristic curve (AUC), which directly maximizes classification performance, evaluated based on AUC value, in the computer-aided detection (CADe) scheme.
View Article and Find Full Text PDFObjective: The present study was designed to explore the cited status and its correlated factors of articles published in Chinese Journal of Pediatrics.
Method: Articles published in Chinese Journal of Pediatrics from 2001 to 2010 were searched using Wanfang Medical Online database, and the relationship between cited number and column and funding status were analyzed.
Results: Totally 3209 articles were published by Chinese Journal of Pediatrics from 2001 to 2010.
Purpose: A massive-training artificial neural network (MTANN) has been developed for the reduction of false positives (FPs) in computer-aided detection (CADe) of polyps in CT colonography (CTC). A major limitation of the MTANN is the long training time. To address this issue, the authors investigated the feasibility of two state-of-the-art regression models, namely, support vector regression (SVR) and Gaussian process regression (GPR) models, in the massive-training framework and developed massive-training SVR (MTSVR) and massive-training GPR (MTGPR) for the reduction of FPs in CADe of polyps.
View Article and Find Full Text PDFWe propose a novel similarity measure, called the correntropy coefficient, sensitive to higher order moments of the signal statistics based on a similarity function called the cross-correntopy. Cross-correntropy nonlinearly maps the original time series into a high-dimensional reproducing kernel Hilbert space (RKHS). The correntropy coefficient computes the cosine of the angle between the transformed vectors.
View Article and Find Full Text PDFSupervised learning is conventionally performed with pairwise input-output labeled data. After the training procedure, the adaptive system's weights are fixed while the testing procedure with unlabeled data is performed. Recently, in an attempt to improve classification performance unlabeled data has been exploited in the machine learning community.
View Article and Find Full Text PDF