Publications by authors named "Jian-qun Chen"

Plants deploy cell-surface pattern recognition receptors (PRRs) and intracellular nucleotide-binding site-leucine-rich repeat receptors (NLRs) to recognize pathogens. However, how plant immune receptor repertoires evolve in responding to changed pathogen burdens remains elusive. Here we reveal the convergent reduction of NLR repertoires in plants with diverse special lifestyles/habitats (SLHs) encountering low pathogen burdens.

View Article and Find Full Text PDF

Ribose 2'-O-methylation is involved in critical biological processes, but its biological functions and significance in mRNAs remain underexplored. We have developed NJU-seq, a sensitive method for unbiased 2'-O-methylation (Nm) profiling, and Nm-VAQ, a site-specific quantification tool. Using these tools in tandem, we identified thousands of Nm sites on mRNAs of human and mouse cell lines, of which 68 of 84 selected sites were further validated to be more than 1% 2'-O-methylated.

View Article and Find Full Text PDF

Along with the emergence of green plants on this planet one billion years ago, the nucleotide binding site leucine-rich repeat (NLR) gene family originated and diverged into at least three subclasses. Two of them, with either characterized N-terminal toll/interleukin-1 receptor (TIR) or coiled-coil (CC) domain, serve as major types of immune receptor of effector-triggered immunity (ETI) in plants, whereas the one having a N-terminal Resistance to powdery mildew8 (RPW8) domain, functions as signal transfer component to them. In this review, we briefly summarized the history of identification of diverse NLR subclasses across Viridiplantae lineages during the establishment of NLR category, and highlighted recent advances on the evolution of NLR genes and several key downstream signal components under the background of ecological adaption.

View Article and Find Full Text PDF

Red blood cells (RBC) are commonly known as cells with no nucleus or mitochondria and are assumed to be a transportation vehicle. This study confirms that RBC contain long DNA fragments inside with stain by both microscope and flow cytometry, which covers most nuclear and mitochondrial genome regions by next-generation sequencing (NGS). Such characteristics demonstrate a significant difference compared with A549 cell line or paired peripheral blood mononuclear cell as nucleated cells.

View Article and Find Full Text PDF

Background: Severe pneumonia is one of the common acute diseases caused by pathogenic microorganism infection, especially by pathogenic bacteria, leading to sepsis with a high morbidity and mortality rate. However, the existing bacteria cultivation method cannot satisfy current clinical needs requiring rapid identification of bacteria strain for antibiotic selection. Therefore, developing a sensitive liquid biopsy system demonstrates the enormous value of detecting pathogenic bacterium species in pneumonia patients.

View Article and Find Full Text PDF

Arbuscular mycorrhizal symbiosis (AMS) is an ancient plant-fungus relationship that is widely distributed in terrestrial plants. The formation of symbiotic structures and bidirectional nutrient exchange requires the regulation of numerous genes. However, the landscape of RNAome during plant AMS involving different types of regulatory RNA is poorly understood.

View Article and Find Full Text PDF

Nucleotide-binding leucine-rich-repeat (NLR) genes comprise the largest family of plant disease-resistance genes. Angiosperm NLR genes are phylogenetically divided into the TNL, CNL, and RNL subclasses. NLR copy numbers and subclass composition vary tremendously across angiosperm genomes.

View Article and Find Full Text PDF

In the soybean variant V94-5152, a BCMV-resistance gene was mapped near to the region of SMV-resistance Rsv4 locus, raising a possibility that V94-5152 may rely on Rsv4 locus to resist against both SMV and BCMV. Both Soybean mosaic virus (SMV) and Bean common mosaic virus (BCMV) can induce soybean mosaic diseases, but few studies have explored soybean resistance against BCMV so far. In this study, V94-5152, a soybean variant resistant to BCMV and SMV, was crossed with a susceptible cultivar, Williams 82 to map the resistance gene.

View Article and Find Full Text PDF

In the soybean cultivar Raiden, both a SMV-resistance gene and a BCMV-resistance gene were fine-mapped to a common region within the Rsv1 complex locus on chromosome 13, in which two CC-NBS-LRR resistance genes (Glyma.13g184800 and Glyma.13g184900) exhibited significant divergence between resistant and susceptible cultivars and were subjected to positive selection.

View Article and Find Full Text PDF

Cutaneous melanoma (CM) is a life-threatening form of skin cancer. Prognostic biomarkers can reliably stratify patients at initial melanoma diagnosis according to risk, and may inform clinical decisions. Here, we performed a retrospective, cohort-based study analyzing genome-wide DNA methylation of 461 patients with CM from the TCGA database.

View Article and Find Full Text PDF

The NBS-LRR genes are functionally responsible for plant resistance to alien pathogens. Here, we show that NBS-LRR genes originated in the common ancestor of the whole green lineage, and have rapidly diverged into three subclasses with different domain combinations (TNL, CNL, and RNL) before the split of green algae.

View Article and Find Full Text PDF

In the soybean cultivar Suweon 97, BCMV-resistance gene was fine-mapped to a 58.1-kb region co-localizing with the Soybean mosaic virus (SMV)-resistance gene, Rsv1-h raising a possibility that the same gene is utilized against both viral pathogens. Certain soybean cultivars exhibit resistance against soybean mosaic virus (SMV) or bean common mosaic virus (BCMV).

View Article and Find Full Text PDF

Objective: To explore the effect and mechanism of artesunate on γδ T cell-mediated antitumor immune responses against hepatoma carcinoma cells (HepG2) in vitro.

Methods: Human γδ T cells or HepG2 were respectively treated with artesunate, subjected to co-culture as appropriate, and the following assays were subsequently conducted: CCK8 to examine cell viability; LDH release assay to detect the killing effect of γδ T cells on HepG2 cells; flow cytometry to examine the expression of perforin (PFP) and granzyme B (GraB) of γδ T cells; ELISA to evaluate the levels of TGF-β1 and IL-10 in the collected supernatant of HepG2 cells pretreated with artesunate; and Western blot analysis to examine Fas, FasL, STAT3, p-STAT3 expression of HepG2 cells induced by artesunate.  Results: The results showed that the cytotoxicity effect of γδ T cells pretreated with artesunate on HepG2 cells was augmented via elevating the expression of GraB in γδ T cells.

View Article and Find Full Text PDF
Article Synopsis
  • The study identified divergent alleles (NBS_C, NBS_D, and Columbia NBS_E) as likely candidates for conferring resistance to the soybean mosaic virus (SMV) in the soybean Rsv3 locus.
  • The researchers sequenced BAC inserts from the Rsv3 locus in the resistant cultivar Zaoshu 18, confirming it shares gene content with Williams 82 but exhibits significant differences in some NBS-LRR genes.
  • Analysis of various cultivars showed the NBS_A-D genes diverged into different alleles associated with either resistant or susceptible types, with signs of positive selection and recombination influencing allele differences.
View Article and Find Full Text PDF

Soybean mosaic virus (SMV) is a devastating plant virus classified in the family Potyviridae, and known to infect cultivated soybeans (Glycine max). In this study, seven new SMVs were isolated from wild soybean samples and analyzed by whole-genome sequencing. An updated SMV phylogeny was built with the seven new and 83 known SMV genomic sequences.

View Article and Find Full Text PDF

The Rsv1 - h gene in cultivar Suweon 97, which confers resistance to SMVs, was mapped to a 97.5-kb location (29,815,195-29,912,667 bp on chromosome 13) in the Rsv1 locus, thereby providing additional insights into the molecular nature underlying variations in resistance alleles in this particular locus. Soybean mosaic virus (SMV) is a well-known devastating pathogen of soybean (Glycine max (L.

View Article and Find Full Text PDF

A major soybean (Forrest cultivar) quantitative trait locus (QTL) gene, Rhg4, which controls resistance to soybean cyst nematodes (SCN), encodes the enzyme serine hydroxylmethyltransferase (SHMT). The resistant allele possesses two critical missense mutations (P130R and N358Y) compared to that of the sensitive allele, rhg4. To understand the evolutionary history of this gene, sequences of 117 SHMT family members from 18 representative plant species were used to reconstruct their phylogeny.

View Article and Find Full Text PDF

Nucleotide-Binding Site-Leucine-Rich Repeat (NBS-LRR) genes are the largest plant disease resistance (R) gene family, accounting for ∼80% of more than 140 cloned R genes. Recently, we systematically investigated NBS-LRR genes in 22 angiosperm genomes. By performing phylogenetic analysis of these genes in major angiosperm clades separately and as a whole, we gained strong evidence supporting that angiosperm NBS-LRR genes are derived from 3 anciently separated NBS-LRR classes: RPW8-NBS-LRR (RNL), TIR-NBS-LRR (TNL) and CC-NBS-LRR (CNL).

View Article and Find Full Text PDF

A majority of land plants can form symbiosis with arbuscular mycorrhizal (AM) fungi. MicroRNAs (miRNAs) have been implicated to regulate this process in legumes, but their involvement in non-legume species is largely unknown. In this study, by performing deep sequencing of sRNA libraries in tomato roots and comparing with tomato genome, a total of 700 potential miRNAs were predicted, among them, 187 are known plant miRNAs that have been previously deposited in miRBase.

View Article and Find Full Text PDF

Nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes make up the largest plant disease resistance gene family (R genes), with hundreds of copies occurring in individual angiosperm genomes. However, the expansion history of NBS-LRR genes during angiosperm evolution is largely unknown. By identifying more than 6,000 NBS-LRR genes in 22 representative angiosperms and reconstructing their phylogenies, we present a potential framework of NBS-LRR gene evolution in the angiosperm.

View Article and Find Full Text PDF
Article Synopsis
  • Plant resistance genes (R genes) are highly diverse and play a crucial role in the immune system of plants against pathogens, though few functional R genes have been discovered in well-studied crops.
  • A study of 332 NBS-LRR genes from resistant rice cultivars found that nearly half possess functional rice blast R genes, with many derived from diverse gene groupings that enhance the plant's ability to recognize and respond to various pathogen isolates.
  • The findings suggest that there is likely a wealth of functional R genes in plants for other pathogens as well, indicating that many existing NBS-LRR genes might still function effectively, supporting the research methods used in identifying these resistance genes.
View Article and Find Full Text PDF

Mutation rates vary within genomes, but the causes of this remain unclear. As many prior inferences rely on methods that assume an absence of selection, potentially leading to artefactual results, we call mutation events directly using a parent-offspring sequencing strategy focusing on Arabidopsis and using rice and honey bee for replication. Here we show that mutation rates are higher in heterozygotes and in proximity to crossover events.

View Article and Find Full Text PDF
Article Synopsis
  • SMV is a damaging pathogen to soybean and its various strains have not been studied in detail for pathogenic differences and evolutionary relationships.
  • Researchers obtained 18 new genomic sequences of Chinese SMV strains, revealing frequent recombination and identifying four distinct SMV clades for the first time.
  • Findings showed significant genetic differences between SMV populations in China, Korea, and the U.S., indicating positive selection on certain genes and suggesting notable differences in pathogenicity between Chinese and American strains.
View Article and Find Full Text PDF