Publications by authors named "Jian-qi Zhang"

Quantum heat engines and refrigerators are open quantum systems, whose dynamics can be well understood using a non-Hermitian formalism. A prominent feature of non-Hermiticity is the existence of exceptional points (EPs), which has no counterpart in closed quantum systems. It has been shown in classical systems that dynamical encirclement in the vicinity of an EP, whether the loop includes the EP or not, could lead to chiral mode conversion.

View Article and Find Full Text PDF

(Fabaceae, Hedysareae) is described and illustrated from the Qilianshan Mountains in Gansu, China. This new species is similar to , but can be distinguished by its corolla being light purple to purple, standard 15-19 mm long, wings 14-16 mm long, keels 16-19 mm long, and the ovary and legume being glabrous. The new species can be easily distinguished from Ledeb.

View Article and Find Full Text PDF

Conventional theoretical studies on the ground-state laser cooling of a trapped ion have mostly focused on the weak sideband coupling (WSC) regime, where the cooling rate is inverse proportional to the linewidth of the excited state. In a recent work [New J. Phys.

View Article and Find Full Text PDF

We propose how to achieve synthetic symmetry in optomechanics without using any active medium. We find that harnessing the Stokes process in such a system can lead to the emergence of exceptional point (EP), i.e.

View Article and Find Full Text PDF

Evidence has shown that angiotensin II type 1 receptor antagonists have lower blood pressure and have target organ protective effects, but this is not the case for the drug allisartan isoproxil. The aim of this study was to evaluate the effects of allisartan isoproxil on blood pressure and target organ injury in patients with mild to moderate essential hypertension.In total, 80 essential hypertensive participants were randomly divided into an allisartan group and a nifedipine group (n = 40 per group), and their blood pressure was measured once per month for 6 months.

View Article and Find Full Text PDF

We propose a quantum interference cooling scheme for a nano-mechanical resonator (NAMR) in a hybrid optomechanical system. In our scheme, atoms are trapped in an optomechanical cavity, and this optomechanical cavity interacts both atoms and an optical cavity. Therefore, the absorption of the optomechanical resonator can be modified by quantum interference effects induced by the atom-cavity and cavity-cavity couplings.

View Article and Find Full Text PDF

Hind-limb ischemia (HLI) is one of the major complication of diabetic patients. Angiogenesis potential in diabetic patients is severely disrupted, and the mechanism underlying it has not been fully elucidated, making it an obstacle for developing an efficient therapeutic angiogenesis strategy. Skeletal muscle cells, through their paracrine function, had been known to be critical for neoangiogenesis.

View Article and Find Full Text PDF

The efficient cooling of nanomechanical resonators is essential to exploration of quantum properties of the macroscopic or mesoscopic systems. We propose such a laser-cooling scheme for a nanomechanical cantilever, which works even for the low-frequency mechanical mode and under weak cooling lasers. The cantilever is coupled by a diamond nitrogen-vacancy center under a strong magnetic field gradient and the cooling is assisted by a dynamical Stark-shift gate.

View Article and Find Full Text PDF

Platelets are anuclear cells and are devoid of genomic DNA, but they are capable of de novo protein synthesis from mRNA derived from their progenitor cells, megakaryocytes. There is mounting evidence that microRNA (miRNA) plays an important role in regulating gene expression in platelets. miR-223 is the most abundant miRNAs in megakaryocytes and platelets.

View Article and Find Full Text PDF

In contrast to the optomechanically induced transparency (OMIT) defined conventionally, the inverse OMIT behaves as coherent absorption of the input lights in the optomechanical systems. We characterize a feasible inverse OMIT in a multi-channel fashion with a double-sided optomechanical cavity system coupled to a nearby charged nanomechanical resonator via Coulomb interaction, where two counter-propagating probe lights can be absorbed via one of the channels or even via three channels simultaneously with the assistance of a strong pump light. Under realistic conditions, we demonstrate the experimental feasibility of our model by considering two slightly different nanomechanical resonators and the possibility of detecting the energy dissipation of the system.

View Article and Find Full Text PDF

We propose a ground state cooling scheme for an optomechanical resonator based on the system of one Λ-type three-level atom trapped in an optomechanical cavity. This cooling scheme works in a single-photon coupling, and strong atom-cavity coupling regimes. By investigating the cooling dynamics, we find that there is an EIT-like quantum coherent effect in this system which can suppress the undesired transitions for heating.

View Article and Find Full Text PDF

To reduce artificial auxiliary works in oil spills detection process, an automatic oil spill detection method based on adaptive matched filter is presented. Firstly, the characteristics of reflectance spectral signature of C-H bond in oil spill are analyzed. And an oil spill spectral signature extraction model is designed by using the spectral feature of C-H bond.

View Article and Find Full Text PDF

We propose an efficient optical electromagnetically induced transparency (EIT) cooling scheme for a cantilever with a nitrogen-vacancy center attached in a non-uniform magnetic field using dynamical Zeeman effect. In our scheme, the Zeeman effect combined with the quantum interference effect enhances the desired cooling transition and suppresses the undesired heating transitions. As a result, the cantilever can be cooled down to nearly the vibrational ground state under realistic experimental conditions within a short time.

View Article and Find Full Text PDF

To investigate the relationship between circulating microRNA 223 (miR-223) levels and clopidogrel responsiveness in patients with coronary heart disease. A total of 62 consecutive patients with troponin-negative non-ST elevation acute coronary syndrome (NSTE-ACS) scheduled for elective percutaneous coronary intervention were enrolled. The plasma circulating miR-223 levels were quantified by real-time PCR, and platelet reactivity was determined by platelet reactivity index (PRI), measured by vasodilator-stimulated phosphoprotein (VASP) phosphorylation flow cytometry after 300 mg (for at least 24 h) or 75 mg clopidogel (for at least 5 days) plus aspirin treatment.

View Article and Find Full Text PDF

We show a purely electronic cooling scheme to cool a charged mechanical resonator (MR) down to nearly the vibrational ground state by elaborately tuning bias gate voltages on the electrodes, which couple the MR by the Coulomb interaction. The key step is the modification of the time-dependent effective eigen-frequency of the MR based on the Lewis-Riesenfeld invariant. With respect to a relevant idea proposed previously (Li et al 2011 Phys.

View Article and Find Full Text PDF

Most existing target acquisition (TA) models neglect the influence of background clutter, which results in inaccurate prediction of TA performance in a complicated environment. In this paper, all the background clutter is first quantitatively characterized by the distribution of edge clutter metric, and its effects on the target detection probability are analyzed. Further, a novel TA model is developed by combining this proposed clutter metric and the target task performance metric based on probability statistics theory.

View Article and Find Full Text PDF

A novel model for three dimensional (3D) interactive control of viewing parameters of integral imaging systems is established in this paper. Specifically, transformation matrices are derived in an extended homogeneous light field coordinate space based on interactive controllable requirement of integral imaging displays. In this model, new elemental images can be synthesized directly from the ones captured in the record process to display 3D images with expected viewing parameters, and no extra geometrical information of the 3D scene is required in the synthesis process.

View Article and Find Full Text PDF

HIV-1 integrase (HIV-1 IN), a key element of HIV-1-derived lentiviral vectors, is crucial for the stable maintenance of the vector gene by inserting them into host genome. HIV-1 IN has been found to have functions other than integration, such as involving in virion morphology, viral DNA synthesis and viral DNA nuclear import. In our study, the yeast two-hybrid assay identified a tetrapeptide 156KELK159 in HIV-1 IN that was crucial for HIV-1 IN and Daxx interaction.

View Article and Find Full Text PDF

Background clutter is becoming one of the most important factors affecting the target acquisition performance of electro-optical imaging systems. A novel clutter metric based on sparse representation is proposed in this paper. Based on sparse representation, the similarity vector is defined to describe the similarity between the background and the target in the feature domain, which is a typical feature of the background clutter.

View Article and Find Full Text PDF

According to the characteristic of single-element detector and non-imaging spectroradiometer, a new imaging FTIR spectroradiometer system was developed for spectral data acquisition This system is composed of a spectroradiometer, a synchronous controller and a scanning device. Using the data interface of spectroradiometer, spectral radiometric calibration can be achieved for the system. The image resolution is 500 x 500 pixels, spectral range is 667-5000 cm(-1), spectral resolution is 1 cm(-1), and space Field of view is 150 degrees, Instant Field of View is 0.

View Article and Find Full Text PDF

TTRAP is a PML-NB protein that is involved in the NF-kappaB signaling pathway. TTRAP was recently identified by yeast two-hybrid analysis as a HIV-1 integrase (HIV-1 IN) interacting protein. This interaction was verified by co-immunoprecipitation, GST pull-down, and intracellular imaging, and deletion assays suggested that the N-terminal 180 residues of TTRAP are responsible for the interaction.

View Article and Find Full Text PDF

Palladium colloid was obtained via laser ablation under 1064 nm excitation from an Nd:YAG laser in redistilled deionized water. The Pd colloid consisted of "chemically pure" Pd nanoparticles, which were free from extraneous ions or other chemicals since no chemical reaction was involved in the preparation. There was no characteristic peak in UV/Vis spectrum of Pd colloid in the region of 200-800 nm.

View Article and Find Full Text PDF

The death-associated protein Daxx is a ubiquitously expressed gene in mammals and is widely involved in transcriptional regulation and cellular intrinsic immune response against incoming virus. We found here that knocking down endogenous Daxx with specific siRNA increased HIV-1-derived lentiviral reporter gene expression in 293T cells. This repressive effect of Daxx is not due to its inhibition on viral gene integration into the cellular genome and is independent of the ubiquitin promoter on the vFUGW lentiviral vector.

View Article and Find Full Text PDF

A method to determine the limiting resolution of a microscanning imager is proposed. Specifically, both the sample-scene phase effects and aliasing effects due to microscanning are modeled in this method by combining the pixel transfer function and the squeeze modulation transfer function. Further, this model is used to calculate the amount of improvement from typical microscanning modes to the limiting resolution of the imager focusing on various blur factors.

View Article and Find Full Text PDF

Microscanning is an important technique in high-resolution electro-optical imaging. It can increase the resolution and improve the performance of imaging systems. For optimum design of a staring imaging system with microscanning modes it is necessary to choose the optimum microscanning mode according to the fill factor of the detector.

View Article and Find Full Text PDF