Publications by authors named "Jian-meng Chen"

Magnetic fields (MF) have been proven efficient in bioaugmentation, and the internal MFs have become competitive because they require no configuration, despite their application in waste gas treatment remaining largely unexplored. In this study, we firstly developed an intensity-regulable bioaugmentation with internal MF for gaseous chlorobenzene (CB) treatment with modified packing in batch bioreactors, and the elimination capacity increased by up to 26%, surpassing that of the external MF. Additionally, the microbial affinity to CB and the packing surface was enhanced, which was correlated with the ninefold increased secreted ratio of proteins/polysaccharides, 43% promoted cell surface hydrophobicity, and half reduced zeta potential.

View Article and Find Full Text PDF

Solid non-aqueous phases (NAPs), such as silicone rubber, have been used extensively to improve the removal of volatile organic compounds (VOCs). However, the removal of VOCs is difficult to be further improved because the poor understanding of the mass transfer and reaction processes. Further, the conventional reactors were either complicated or uneconomical.

View Article and Find Full Text PDF

In this study, sodium acetate (NaAC) as a co-substrate effectively promoted the metabolism of sulfamethoxazole (SMX) by microalgae Chlorella pyrenoidosa. In the cultivation supplied with 5.0 and 10.

View Article and Find Full Text PDF

Saline wastewater was used in this study to culture freshwater microalgae Chlorella pyrenoidosa in sequencing batch photobioreactor to improve the sedimentation and lipid production of algal cells. Influent salinity of 0.5% or above effectively promoted the sedimentation of microalgae in the settling stage of photobioreactor, and greatly reduced the algal biomass in effluent.

View Article and Find Full Text PDF

Bioaugmented biotrickling filter (BTF) seeded with Piscinibacter caeni MQ-18, Pseudomonas oleovorans DT4, and activated sludge was established to investigate the treatment performance and biodegradation kinetics of the gaseous mixtures of tetrahydrofuran (THF) and methyl tert-butyl ether (MTBE). Experimental results showed an enhanced startup performance with a startup period of 9 d in bioaugmented BTF (25 d in control BTF seeded with activated sludge). The interaction parameter I of control (7.

View Article and Find Full Text PDF

This study investigated the possibility of coupling anaerobic hydrolysis in an anaerobic membrane bioreactor (AnMBR) with mixotrophic microalgae cultivation in a membrane photobioreactor (MPBR) for the sustainable treatment of municipal wastewater. Using the hydrolyzed wastewater discharged from AnMBR, Chlorella pyrenoidosa in MPBR grew in a mixotrophic mode and realized rapid growth. During the stable operation, MPBR achieved average carbon capture rate of 42.

View Article and Find Full Text PDF

Two-phase partitioning bioreactors (TPPBs) have been extensively used for volatile organic compounds (VOCs) removal. To date, most studies have focused on improving the mass transfer of gas phases/non-aqueous phases (NAPs)/aqueous phases, whereas the NAP/biological phases and gas/biological phases transfer has been neglected. Herein, chitosan was introduced into a TPPB to increase cell surface hydrophobicity (CSH) and improve the n-hexane mass transfer.

View Article and Find Full Text PDF

The use of microbial photoelectrochemical cells (MPECs) for the removal of contaminants is a cost-effective and environment-friendly method. Based on the preparation of polyaniline/titanium dioxide nanotube array (PANI/TiO-NTs) composite photoelectrodes, an MPEC system comprising PANI/TiO-NTs photoanode and biocathode was constructed and the removal performance of nitrate nitrogen (NO-N) was studied. The experimental results showed that the PANI/TiO-NT electrode exhibited the best photoelectric performance when the PANI loading time was 80 s.

View Article and Find Full Text PDF

In this study, a water-silicone oil biphasic system was developed to enhance the biodegradation of monochlorobenzene (CB) by LW26. Compared to the single phase, the biphasic system with a suitable silicone oil fraction (/) of 20% allowed a 2.5-fold increase in the maximum tolerated CB concentration.

View Article and Find Full Text PDF

A nutritional slow-release packing material with function microorganisms (SC) was prepared using emulsification and the cross-linked method. Its potential as packing material in biotrickling filters (BTF) for butyl acetate removal was evaluated. The physicochemical properties show that the packing has a porosity of 92.

View Article and Find Full Text PDF

The performance and microbial communities of methyl -butyl ether (MTBE) treatment using a biotrickling filter (BTF) that was inoculated with activated sewage sludge were investigated. The BTF successfully started up within 23 days when the inlet concentration of MTBE was 100 mg·m and empty bed retention time was 60 s, with 70% removal efficiency (RE). Under steady-state conditions, an elimination capacity (EC) and a mineralization ratio of 13.

View Article and Find Full Text PDF

A yellowish-pigmented bacterial strain, designated as MQ-18, was isolated from a sample of activated sludge collected from a pharmaceutical factory in Zhejiang, China. The strain was characterized through a polyphasic taxonomy approach. 16S rRNA gene sequence analysis demonstrated that strain MQ-18 showed high similarities to Piscinibacter defluvii SH-1 (99.

View Article and Find Full Text PDF

Characteristics of extracellular polymeric substances (EPS) in activated sludge strongly depend on wastewater substrates. Proteinaceous substrates (ProS) present in heterogeneous polymeric form are intrinsic and important parts of wastewater substrates for microorganisms in activated sludge systems. However, correlations between ProS and characteristics of EPS are scarce.

View Article and Find Full Text PDF

Volatile organic sulfide compounds (VOSCs) are usually resistant to biodegradation, thereby limiting the performance of traditional biotechnology dealing with waste gas containing such pollutants especially in mixture. In this study, a solid composite microbial inoculant (SCMI) was prepared to remove dimethyl sulfide (DMS) and propanethiol (PT). Given that the DMS degradation activity of Alcaligenes sp.

View Article and Find Full Text PDF

Different from monomeric substrate, polymeric substrate (PS) needs to undergo slow hydrolysis process before becoming available for consumption by bacteria. Hydrolysis products will be available for the heterotrophs in low concentration, which will reduce competitive advantages of heterotrophs to nitrifiers in mixed culture. Therefore, some links between PS and nitrification process can be expected.

View Article and Find Full Text PDF

The biodegradation of gas-phase mixtrue of dimethyl sulfide (DMS) and 1-propanethiol (PT) was examined in a biotrickling filter (BTF), inoculated with a microbial consortium composed of activated sewage sludge, and pure strains of sp. SY1 and S-1. BTF could be successfully started up within only 11 days when the inlet concentrations of DMS and PT were both 50 mg·m and EBRT was 30 s, with 90% removal efficiency (RE) of DMS and 100% RE of PT.

View Article and Find Full Text PDF

A bacterium strain LW26 which could utilize chlorobenzene (CB) as sole carbon and energy source was isolated from a biotrickling filter reactor treating CB-contaminated off-gas. Based on its morphological and physiological characteristics, as well as the analysis of 16S rRNA gene sequence and Biolog test, the strain LW26 was identified as . To our best knowledge, it is the first time that the strain was applied for CB purification.

View Article and Find Full Text PDF

Bioremediation usually exhibits low removal efficiency toward hexane because of poor water solubility, which limits the mass transfer rate between the substrate and microorganism. This work aimed to enhance the hexane degradation rate by increasing cell surface hydrophobicity (CSH) of the degrader, Pseudomonas mendocina NX-1. The CSH of P.

View Article and Find Full Text PDF

An experimental investigation on purification of waste gas contaminated with a mixture of dichloromethane (DCM) and dichloroethane(1,2-DCA) was conducted in a biotrickling filter (BTF) inoculated with activated sludge of pharmaceuticals industry. Stable removal efficiency(RE) above 80% for DCM and above 75% for 1,2-DCA were achieved after 35 days, indicating that biofilm was developed. The best elimination capacity (EC) of DCM and 1,2-DCA were 13 g.

View Article and Find Full Text PDF

Pseudomonas putida S-1 was isolated from activated sludge. This novel strain was capable of degrading malodorous 1-propanethiol (PT). PT degradation commenced with no lag phase by cells pre-grown in nutrition-rich media, such as Luria-Bertani (LB), and PT-contained mineral medium at specific growth rates of 0.

View Article and Find Full Text PDF

A novel rapid green one-step method was developed for the preparation of manganese modified diatomite (Mn-D) by treating roasted diatomite with an acidic permanganate solution. The effects of calcination temperature and mass ratio of KMnO4 and diatomite (p) on aniline removal efficiency of Mn-D were investigated. The removal kinetics and mechanism of aniline by Mn-D were also discussed.

View Article and Find Full Text PDF

A strain bacterium that is thermophilic, heterotrophic nitrifying, and aerobic denitrifying was isolated and identified as Anoxybacillus contaminans HA for the first time. The identification was based on morphological and physiological characterizations, together with phylogenetic analysis of 16S rDNA sequence. The strain possessed excellent tolerance to high temperatures, with 55 °C as its optimum and 60 °C as viable.

View Article and Find Full Text PDF

For non-biodegradable volatile organic compounds (VOCs) with low water solubility, the tradition biological method can not achieve a satisfactory removal efficiency, so development of high efficiency pre-treatment technology is a hot issue of research. In this experiment, using poor biodegradable chlorobenzene as the target pollutant and dielectric barrier discharge (DBD) non-thermal plasma as the pretreatment technology for biotrickling filter (BTF) , the effect of DBD on the degradation of chlorobenzene was studied by adjusting the technical parameters of DBD. The effects of the inlet concentration, residence time, humidity and peak voltage on decomposition efficiency were investigated and the decomposition products of chlorobenzene were analyzed.

View Article and Find Full Text PDF

The biodegradation kinetics of tetrahydrofuran, benzene (B), toluene (T), and ethylbenzene (E) were systematically investigated individually and as mixtures by a series of aerobic batch degradation experiments initiated by Pseudomonas oleovorans DT4. The Andrews model parameters, e.g.

View Article and Find Full Text PDF

The reduction of Fe(II)EDTA-NO is one of the core processes in BioDeNOx, an integrated physicochemical and biological technique for NOx removal from industrial flue gases. A newly isolated thermophilic Anoxybacillus sp. HA, identified by 16S rRNA sequence analysis, could simultaneously reduce Fe(II)EDTA-NO and Fe(III)EDTA.

View Article and Find Full Text PDF