Zhongguo Ying Yong Sheng Li Xue Za Zhi
September 2022
A new heterometallic supramolecular complex, consisting of an iridium carbene-based unit appended to a platinum terpyridine acetylide unit, representing a new Ir(III) -Pt(II) structural motif, was designed and developed to act as an active species for photocatalytic hydrogen production. The results also suggested that a light-harvesting process is essential to realize the solar-to-fuel conversion in an artificial system as illustrated in the natural photosynthetic system.
View Article and Find Full Text PDFWe report the utilization of colloidal MoS2 nanoparticles (NPs) for multicomponent photocatalytic water reduction systems in cooperation with a series of cyclometalated Ir(III) sensitizers. The effects of the particle size and particle dispersion of MoS2 NPs catalyst, reaction solvent and the concentration of the components on hydrogen evolution efficiency were investigated. The MoS2 NPs exhibited higher catalytic performance than did other commonly used water reduction catalysts under identical experiment conditions.
View Article and Find Full Text PDFThe photoreduction of water to hydrogen represents a promising method for generating sustainable clean fuel. The molecular processes of this photoreduction require an effective light absorber, such as the ruthenium polybipyridine complex, to collect and convert the solar energy into a usable chemical form. In the search for a highly active and stable photosensitizer (PS), iridium complexes are attractive because of their desirable photophysical characteristics.
View Article and Find Full Text PDFObjective: To demonstrate the hypothesis that aerobic exercise training inhibits the development of insulin resistance through IL-6 and probe into the possible molecular mechanism about it.
Methods: Rats were raised with high-fat diets for 8 weeks to develop insulin resistance, and glucose infusion rates (GIRs) were determined by hyperinsulinemic-euglycemic clamping to confirm the development of insulin resistance. Aerobic exercise training (the speed and duration time in the first week were respectively 16 m/min and 50 min, and speed increased 1m/min and duration time increased 5 min every week following it) and/or IL-6shRNA plasmid injection (rats received IL-6shRNA injection via the tail vein every two weeks) were adopted during the development of insulin resistance.
Two new charge-neutral iridium complexes, [Ir(tfm-ppy)(2)(N,N'-diisopropyl-benzamidinate)] (1) and [Ir(tfm-ppy)(2)(N,N'-diisopropyl-4-diethylamino-3,5-dimethyl-benzamidinate)] (2) (tfm-ppy=4-trifluoromethyl-2-phenylpyridine) containing an amidinate ligand and two phenylpyridine ligands were designed and characterised. The photophysical properties, electrochemical behaviours and emission quenching properties of these species were investigated. In concert with the cobalt catalyst [Co(bpy)(3)](2+), members of this new class of iridium complexes enable the photocatalytic generation of hydrogen from mixed aqueous solutions via an oxidative quenching pathway and display long-term photostability under constant illumination over 72 h; one of these species achieved a relatively high turnover number of 1880 during this time period.
View Article and Find Full Text PDFZhonghua Yi Xue Yi Chuan Xue Za Zhi
August 2009
Objective: To identify the origin and study the morphology of small supernumerary marker chromosome (sSMC) in Turner syndrome with 45, X/46, X, + mar karyotype.
Methods: Using the conventional chromosome G-banding technique, 10 cases of Turner syndrome with 45, X/46, X, + mar chromosome karyotype were obtained, dual-color fluorescence in situ hybridization was applied to study the origin and morphology of the sSMC.
Results: In the 10 cases of Turner syndrome with 45, X/46, X, + mar karyotype, the sSMC of 7 cases was derived from X chromosome [sSMC(X)], the sSMC of 2 cases was derived from Y chromosome [sSMC(Y)] and the remaining 1 case was derived from the autosome.