This paper utilizes the theory of quantum diffusion to analyze the electron probability and spreading width of a wavepacket on each layer in a two-dimensional (2D) coupled system with edge disorder, aiming to clarify the effects of edge disorder on the stability of the electron periodic oscillations in 2D coupled systems. Using coupled 2D square lattices with edge disorder as an example, we show that, the electron probability and wavepacket spreading width exhibit periodic oscillations and damped oscillations, respectively, before and after the wavepacket reaches the boundary. Furthermore, these electron oscillations exhibit strong resistance against disorder perturbation with a longer decay time in the regime of large disorder, due to the combined influences of ordered and disordered site energies in the central and edge regions.
View Article and Find Full Text PDF: Hypoxia has been proved to contribute to aggressive phenotype of cancers, while functional and regulatory mechanism of long noncoding RNA (lncRNA) in the contribution of hypoxia on pancreatic cancer (PC) tumorigenesis is incompletely understood. The aim of this study was to uncover the regulatory and functional roles for hypoxia-induced lncRNA-MTA2TR (MTA2 transcriptional regulator RNA, AF083120.1) in the regulation of PC tumorigenesis.
View Article and Find Full Text PDFCancer cells are known to undergo metabolic reprogramming, such as glycolysis and glutamine addiction, to sustain rapid proliferation and metastasis. It remains undefined whether long noncoding RNAs (lncRNA) coordinate the metabolic switch in pancreatic cancer. Here we identify a nuclear-enriched antisense lncRNA of glutaminase (GLS-AS) as a critical regulator involved in pancreatic cancer metabolism.
View Article and Find Full Text PDFThe contribution of long noncoding RNAs (lncRNAs) to pancreatic cancer progression and the regulatory mechanisms of their expression are attractive areas. In the present study, the overexpression of lncRNA-BX111887 (BX111) in pancreatic cancer tissues was detected by microarray and further validated in a cohort of pancreatic cancer tissues. We further demonstrated that knockdown or overexpression of BX111 dramatically repressed or enhanced proliferation and invasion of pancreatic cancer cells.
View Article and Find Full Text PDFWe found a novel metastable magnetic phase by systematically calculating total energy of monolayer FeSe in various antiferromagnetic (AFM) orders using first-principles method. The new metastable magnetic phase named as QAFM is a magnetic state with short-range magnetic structure which can be regarded as a transitional state between checkerboard-like AFM state and collinear AFM state. Both magnetic moments with important fluctuation and charge density difference with a 2 × 4 reconstruction of orbitals breaks C symmetry and possibly commonly corresponds to the nematic phase in recent transmission electron microscopy and neutron scattering experiment observations.
View Article and Find Full Text PDFMigration and invasion inhibitory protein (MIIP) is recently identified as an inhibitor in tumor development. However, the regulatory mechanism and biological contributions of MIIP in pancreatic cancer (PC) have been not elucidated. In this study, we demonstrated a negative feedback of MIIP and hypoxia-induced factor-1α (HIF-1α), which was mediated by a hypoxia-induced microRNA.
View Article and Find Full Text PDFObjective: To investigate therapeutic effect of carotid artery stenting versus endarterectomy for patients with high-risk carotid stenosis.
Methods: A total of 130 carotid stenosis patients at high-risk of stroke were randomly divided into stenting group and endarterectomy group, including 65 patients in each group. The patients in the endarterectomy group underwent endarterectomy and those in the stenting group received carotid artery stenting for treatment.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi
June 2013
Objective: To investigate the current distribution of Paragonimus westermani in Guangdong Province.
Method: Snails and crabs collected from mountain streams in regional survey sites were dissected to detect cercarial and metacercarial infections of P. westermani.
By a molecular dynamics method, we simulated the process of Argon-atom bombardment on a graphene sheet with 2720 carbon atoms. The results show that, the damage of the bombardment on the graphene sheet depends not only on the incident energy but also on the particle flux density of Argon atoms. To compare and analyze the effect of the incident energy and the particle flux density in the Argon-atom bombardment, we defined the impact factor on graphene sheet by calculating the broken-hole area.
View Article and Find Full Text PDFUsing first principles calculations, we investigate the atomic and electronic structure of carbon nanowires (CNWs) as the carbon chain inserted into single wall carbon nanotubes (SWCNTs). It indicates that the (5,5) CNW system exhibits metallic character, however, the insertion of carbon chain can transit a semi-conducting (9,0) SWCNT into a metallic.
View Article and Find Full Text PDF