The arousal peptides, orexins, play an important role in regulating the function of the prefrontal cortex (PFC). Although orexins have been shown to increase the excitability of deep-layer neurons in the medial prefrontal cortex (mPFC), little is known about their effect on layer 2/3, the main intracortical processing layer. In this study, we investigated the effect of orexin-A on pyramidal neurons in layer 2/3 of the mPFC using whole-cell recordings in rat brain slices.
View Article and Find Full Text PDFShort-term sleep deprivation (SD) has been shown to enhance cortical activity. However, alterations in the cellular excitability of cortical neurons following SD are not yet fully understood. The present study investigated the effects of 4-hour SD on pyramidal neurons in the prefrontal cortex (PFC) of rats using whole-cell patch-clamp recording.
View Article and Find Full Text PDFIt is widely known that hypocretins are essential for the regulation of wakefulness. Our recent reports have found that hypocretin-1 shows a direct postsynaptic excitatory effect on rat prefrontal cortex (PFC) pyramidal neurons. It remains unclear whether hypocretin-1 may interact with two classical neurotransmitter systems, glutamate and gamma-aminobutyric acid (GABA) in rat PFC.
View Article and Find Full Text PDFWe have investigated the direct excitatory effects of hypocretin-1 on acutely isolated prefrontal cortical pyramidal neurons and explored the signaling mechanisms of these actions. Puff application of hypocretin-1 caused an excitation in the recorded neurons. These effects of hypocretin-1 were abolished by a phospholipase C inhibitor D609, demonstrating that phospholipase C mediates the actions of hypocretin-1.
View Article and Find Full Text PDFWe have investigated the effect of orexin A on the intracellular free calcium concentration ([Ca2+]i) in primary cultured cortical neurons and explored the exact mechanisms of orexin A-evoked changes of [Ca2+]i. In the present study, changes of [Ca2+]i induced by orexin A in primary cultured cortical neurons were first detected by confocal laser scanning microscopy using Ca2+-sensitive dye fluo-4 as a novel calcium fluorescent probe. Our results showed that 1-0.
View Article and Find Full Text PDF