Publications by authors named "Jian-Shui Zhang"

Tripartite motif 32 (TRIM32) is a member of TRIM family that plays a potential role in neural regeneration. However, the biological function of TRIM32 in cerebral ischemia reperfusion injury has not been investigated. In the present study, we evaluated the expression level of TRIM32 in hippocampal neurons following oxygen-glucose deprivation/reperfusion (OGD/R).

View Article and Find Full Text PDF

Background: MicroRNAs play crucial roles in tumorigenesis and tumor progression. miR-770 has been reported to be downregulated in several cancers and affects cancer cell proliferation, apoptosis, metastasis and drug resistance. However, the role and underlying molecular mechanism of miR-770 in human glioma remain unknown and need to be further elucidated.

View Article and Find Full Text PDF

Abnormal hippocampal neurogenesis after acute seizures has been well addressed. However, whether newly generated cells continued to be disturbed even they were born in the chronic stage after pilocarpine-induce status epilepticus has remained elusive. Labeling dividing progenitors and their progeny with retroviral vector expressing green fluorescent protein or proliferation marker 5-bromo-2'-deoxyuridine at 3 months post pilocarpine-induced status epilepticus in mice, a spot of newly born neurons exhibiting hilar ectopic location (4.

View Article and Find Full Text PDF

MicroRNA-25 (miR-25) has been reported to be a major miRNA marker in neural cells and is strongly expressed in ischemic brain tissues. However, the precise mechanism and effect of miR-25 in cerebral ischemia/reperfusion (I/R) injury needs further investigations. In the present study, the oxygen-glucose deprivation (OGD) model was constructed in human SH-SY5Y and IMR-32 cells to mimic I/R injury and to evaluate the role of miR-25 in regulating OGD/reperfusion (OGDR)-induced cell apoptosis.

View Article and Find Full Text PDF

Emerging evidence has linked chronic temporal lobe epilepsy to dramatically reduced neurogenesis in the dentate gyrus. However, the profile of different components of neurogenesis in the chronically epileptic hippocampus is still unclear, especially the incorporation of newly generated cells. To address the issue, newly generated cells in the sub-granular zone of the dentate gyrus were labeled by the proliferation marker bromodeoxyuridine (BrdU) or retroviral vector expressing green fluorescent protein 2 months after pilocarpine-induced status epilepticus.

View Article and Find Full Text PDF

Mounting evidence suggests that the pathological hallmarks of Alzheimer's disease (AD) are caused by the intraneuronal accumulation of beta-amyloid protein (Aβ). Reuptake of extracellular Aβ is believed to contribute significantly to the intraneuronal Aβ pool in the early stages of AD. Published reports have claimed that the low-density lipoprotein receptor-related protein 1 (LRP1) mediates Aβ1-42 uptake and lysosomal trafficking in GT1-7 neuronal cells and mouse embryonic fibroblast non-neuronal cells.

View Article and Find Full Text PDF

We investigated localization of Phospholipase C beta (PLCβ1 and PLCβ4) in laminaes of dorsal hippocampus and different subtypes of hippocampal interneurons in normal Kunming mouse, and their progressive changes during pilocarpine induced status epilepticus (SE) by quantitative immunohistochemistry and real time PCR. PLCβ1 was observed in the pyramidal layer of CA1-3 area, hilus of the dentate gyrus, whereas PLCβ4 was mainly expressed in calcium binding protein positive interneurons, i.e.

View Article and Find Full Text PDF

The characteristic pathological change of Alzheimer's disease (AD) include deposits of β-amyloid protein (Aβ) in brain, neurofibrillary tangles (NFTs), as well as a few neuronal loss. Evidence shows that Aβ causes calcium influx and induces the cleavage of p35 into p25. Furthermore, the binding of p25 to cyclin-dependent kinase 5 (Cdk5) constitutively activates Cdk5.

View Article and Find Full Text PDF

Histamine is a powerful modulator that regulates blood vessels and blood flow. The effect of histamine on the extracortical vessels has been well described, while much less is known about the effect of histamine on intracortical vessels. In this study, we investigated the effect of histamine on regional cerebral blood flow in rat parietal lobe with laser Doppler flowmetry.

View Article and Find Full Text PDF

Objective: To prove the existence neurons in the rat corpus callosum, the potential function of these neurons and their connection.

Methods: Immunohistochemistry was used performed to examine the expressions of NeuN, a mature neuron marker,and N-type voltage-dependent valcium channel alpha1-subunit (Cav2.2)in the section of the rat corpus callosum.

View Article and Find Full Text PDF

Objective: To observe the effect of ligustrazine on cell proliferation in subventricular zone (SVZ) in rat brain with focal cerebral ischemia reperfusion injury.

Methods: Male SD rats were randomly divided into a normal group,a sham operation group,a ligustrazine treatment group, and a control group. The ligustrazine treatment group and the control group were further divided into 5 subgroups: 1d, 3d, 7d, 14d, and 21d reperfusion after 2h middle cerebral artery occlusion (MCAO).

View Article and Find Full Text PDF

Objective: To observe the effect of ligustrazine on cell proliferation in the subventricular zone (SVZ) and dentate gyrus (DG) and nNOS expression in rat brain after cerebral ischemia-reperfusion injury.

Methods: Male SD rats were randomly divided into normal control group, sham operation group, model group and ligustrazine treatment group. The latter two groups were further divided into 5 subgroups for observation at 1, 3, 7, 14 and 21 days after reperfusion following a 2-hour middle cerebral artery occlusion (MCAO).

View Article and Find Full Text PDF