Acute Kidney Injury (AKI) is a multifaceted condition characterised by rapid deterioration of renal function, often precipitated by diverse etiologies. A comprehensive understanding of the molecular underpinnings of AKI is pivotal for identifying potential diagnostic markers and therapeutic targets. This study utilised bioinformatics to elucidate gene expression and immune infiltration in AKI.
View Article and Find Full Text PDFThis study investigates the role of S100A9 in sepsis-associated AKI (SA-AKI) through the lens of pyroptosis, a controlled form of cell death mediated by the gasdermin protein family. Using C57BL/6 mice and S100A9 knockout mice subjected to cecal ligation and puncture (CLP), RNA sequencing and bioinformatics analyses revealed differentially expressed genes (DEGs) related to inflammation and immune responses, with notable upregulation of S100A9. Functional enrichment analyses (GO and KEGG) indicated these DEGs are involved in interferon-beta response, immune processes, and cell adhesion.
View Article and Find Full Text PDFOsteoporosis (OP) constitutes a notable public health concern that significantly impacts the skeletal health of the global aging population. Its prevalence is steadily escalating, yet the intricacies of its diagnosis and treatment remain challenging. Recent investigations have illuminated a profound interlink between gut microbiota (GM) and bone metabolism, thereby opening new avenues for probing the causal relationship between GM and OP.
View Article and Find Full Text PDFObjectives: The translocation of intestinal flora has been linked to the colonization of diverse and heavy lower respiratory flora in patients with septic ARDS, and is considered a critical prognostic factor for patients.
Methods: On the first and third days of ICU admission, BALF, throat swab, and anal swab were collected, resulting in a total of 288 samples. These samples were analyzed using 16S rRNA analysis and the traceability analysis of new generation technology.
Purpose: In this study, our objective was to investigate the potential utility of lymphocyte-C-reactive protein ratio (LCR) as a predictor of disease progression and a screening tool for intensive care unit (ICU) admission in adult patients with acute pancreatitis (AP).
Methods: We included a total of 217 adult patients with AP who were admitted to the First Affiliated Hospital of Harbin Medical University between July 2019 and June 2022. These patients were categorized into three groups: mild AP (MAP), moderately severe AP (MSAP), and severe AP (SAP), based on the presence and duration of organ dysfunction.
Objective: To assess the efficacy of dynamic changes in lymphocyte-C-reactive protein ratio (LCR) on differentiating disease severity and predicting disease progression in adult patients with Coronavirus disease 2019 (COVID-19).
Methods: This single-centre retrospective study enrolled adult COVID-19 patients categorized into moderate, severe and critical groups according to the Diagnosis and Treatment of New Coronavirus Pneumonia (ninth edition). Demographic and clinical data were collected.
Background: Macrophages are innate immune cells whose phagocytosis function is critical to the prognosis of stroke and peritonitis. cis-aconitic decarboxylase immune-responsive gene 1 (Irg1) and its metabolic product itaconate inhibit bacterial infection, intracellular viral replication, and inflammation in macrophages. Here we explore whether itaconate regulates phagocytosis.
View Article and Find Full Text PDFIn this study, we proposed an efficient algorithm (X-LD) for estimating linkage disequilibrium (LD) patterns for a genomic grid, which can be of inter-chromosomal scale or of small segments. Compared with conventional methods, the proposed method was significantly faster, dropped from to - the sample size and the number of SNPs, and consequently we were permitted to explore in depth unknown or reveal long-anticipated LD features of the human genome. Having applied the algorithm for 1000 Genome Project (1KG), we found (1) the extended LD, driven by population structure, universally existed, and the strength of inter-chromosomal LD was about 10% of their respective intra-chromosomal LD in relatively homogeneous cohorts, such as FIN, and to nearly 56% in admixed cohort, such as ASW.
View Article and Find Full Text PDFObjective: In this study, we aimed to explore the demographic and clinical factors that could determine short- and long-term complete pain relief (CPR) in adult patients with primary trigeminal neuralgia (PTN) after microvascular decompression (MVD) to guide clinical practice.
Methods: This single-center retrospective study included adult patients with PTN who underwent MVD as their initial neurosurgical procedure in the Department of Neurosurgery at the Second Affiliated Hospital of Harbin Medical University from January 2017 to December 2019 and completed a 3-year post-surgery follow-up. Demographic and clinical information was obtained from medical records.
Accumulation of reactive oxygen species (ROS), especially on lipids, induces massive cell death in neurons and oligodendrocyte progenitor cells (OPCs) and causes severe neurologic deficits post stroke. While small compounds, such as deferoxamine, lipostatin-1, and ferrostatin-1, have been shown to be effective in reducing lipid ROS, the mechanisms by which endogenously protective molecules act against lipid ROS accumulation and subsequent cell death are still unclear, especially in OPCs, which are critical for maintaining white matter integrity and improving long-term outcomes after stroke. Here, using mouse primary OPC cultures, we demonstrate that interleukin-10 (IL-10), a cytokine playing roles in reducing neuroinflammation and promoting hematoma clearance, significantly reduced hemorrhage-induced lipid ROS accumulation and subsequent ferroptosis in OPCs.
View Article and Find Full Text PDFNumerous epidemiological studies suggest a link between Parkinson's disease (PD) and cancer, indicating that PD-associated proteins may mediate the development of cancer. Here, we investigated a potential role of PD-associated protein α-synuclein in regulating liver cancer progression in vivo and in vitro. We found the negative correlation of α-synuclein with metabotropic glutamate receptor 5 (mGluR5) and γ-synuclein by analyzing the data from The Cancer Genome Atlas database, liver cancer patients and hepatoma cells with overexpressed α-synuclein.
View Article and Find Full Text PDFNumerous epidemiological studies suggest a link between Parkinson's disease (PD) and cancer. However, their relevant pathogenesis is not clear. In the present study, we investigated the potential role of exosome-delivered α-synuclein (α-syn) in the regulation between PD and liver cancer.
View Article and Find Full Text PDFFerroptosis, a newly identified form of cell death, is characterized by iron overload and accumulation of lipid reactive oxygen species. Inactivation of pathways, such as glutathione/glutathione peroxidase 4, NAD(P)H/ferroptosis suppressor protein 1/ubiquinone, dihydroorotate dehydrogenase/ubiquinol, or guanosine triphosphate cyclohydrolase-1/6(R)-L-erythro-5,6,7,8-tetrahydrobiopterin pathways, have been found to induce ferroptosis. The accumulating data suggest that epigenetic regulation can determine cell sensitivity to ferroptosis at both the transcriptional and translational levels.
View Article and Find Full Text PDFRapid eye movement (REM) sleep behavior disorder (RBD) is a powerful early sign of Parkinson's disease (PD), but the pathogenetic mechanism involved in RBD remains largely unexplored. α-Synuclein has been verified to form Lewy bodies in the orexin neurons, whose activity and function rely on the orexin 1 receptor (OX1R). Dysfunction of the OX1R may induce the occurrence of RBD.
View Article and Find Full Text PDFIn this study, we aimed to explore whether lymphocyte-C-reactive protein ratio (LCR) can differentiate disease severity of coronavirus disease 2019 (COVID-19) patients and its value as an assistant screening tool for admission to hospital and intensive care unit (ICU). A total of 184 adult COVID-19 patients from the COVID-19 Treatment Center in Heilongjiang Province at the First Affiliated Hospital of Harbin Medical University between January 2020 and March 2021 were included in this study. Patients were divided into asymptomatic infection group, mild group, moderate group, severe group, and critical group according to the Diagnosis and Treatment of New Coronavirus Pneumonia (ninth edition).
View Article and Find Full Text PDFThere are currently no treatments to delay or prevent Parkinson's disease (PD), and protective treatments require early administration. Targeting axonal degeneration in early PD could have an important clinical effect; however, the underlying molecular mechanisms controlling axonal degeneration in PD are not fully understood. Here, we studied the role of Wnt/β-catenin signaling in axonal degeneration induced by 6-hydroxydopamine (6-OHDA) or overexpression of alpha-synuclein (α-Syn) in vitro and in vivo.
View Article and Find Full Text PDFDysfunction caused by mGluR5 expression or activation is an important mechanism in the development of Parkinson's disease (PD). Early clinical studies on mGluR5 negative allosteric modulators have shown some limitations. It is therefore necessary to find a more specific approach to block mGluR5-mediated neurotoxicity.
View Article and Find Full Text PDFPostoperative cognitive dysfunction is a common neurological complication, characterized by impaired learning and memory, that occurs after anesthesia and surgery, especially in elderly patients. The traditional Chinese medicine baicalin is known to have neuroprotective effects. Therefore, we have investigated whether baicalin can improve postoperative cognitive impairment in aged rats after splenectomy.
View Article and Find Full Text PDFAlthough there are numerous strategies to counteract the death of dopaminergic neurons in Parkinson's disease (PD), there are currently no treatments that delay or prevent the disease course, indicating that early protective treatments are needed. Targeting axonal degeneration, a key initiating event in PD, is required to develop novel therapies; however, its underlying molecular mechanisms are not fully understood. Here, we studied axonal degeneration induced by 6-hydroxydopamine (6-OHDA) in vitro and in vivo.
View Article and Find Full Text PDFBackground: Multiple risk factors contribute to the progression of Parkinson's disease, including oxidative stress and neuroinflammation. Epidemiological studies have revealed a link between higher urate level and a lower risk of developing PD. However, the mechanistic basis for this association remains unclear.
View Article and Find Full Text PDFMetabotropic glutamate receptor (mGlu) regulates microglia activation, which contributes to inflammation. However, the role of mGlu in neuroinflammation associated with Parkinson's disease (PD) remains unclear. Triptolide (T10) exerts potent immunosuppressive and anti-inflammatory effects and protects neurons by inhibiting microglia activation.
View Article and Find Full Text PDFAxonal degeneration is a key pathological feature in many neurological diseases. It often leads to persistent deficits due to the inability of axons to regenerate in the central nervous system. Therefore therapeutic approaches should optimally both attenuate axonal degeneration and foster axonal regeneration.
View Article and Find Full Text PDFWe investigated the effects of aquaporin 5 (AQP5) gene silencing on the proliferation, migration and apoptosis of human glioma cells through regulating the EGFR/ERK/p38MAPK signaling pathway. qRT-PCR was applied to examine the mRNA expressions of AQP5 in five human glioma cell lines. U87-MG, U251 and LN229 cells were selected and assigned into blank, vector, AQP5 siRNA and FlagAQP5 groups.
View Article and Find Full Text PDF