A zwitterionic ligand 3-(triethylammonio)propyne (TAP) has been employed to construct nine silver ethynide compounds for the first time. Single-crystal X-ray analyses reveal that compounds and are silver ethynide assemblies based on the Ag subunits and clusters - are small discrete clusters of Ag, Ag, Ag, and Ag, respectively, ligated by the bulky TAP ligand with different auxiliary ligands. In addition, upon acquiring the tripod-like BuPO, a unprecedented 80 nuclei silver ethynide cluster was isolated and determined to be [(CFCO)@Ag(TAP)(BuPO)(CFCO)] by crystallography and thermogravimetric analysis.
View Article and Find Full Text PDFA 50-year-old female was administered with left lower lobe lesion for 10 days. A preoperative chest computed tomography (CT) revealed a mass in the left basilar segment of the lung, about 2.1 cm × 1.
View Article and Find Full Text PDFNext generation theranostic devices will rely on the smart integration of different functional moieties into one system. These individual chemical elements will have a variety of desired chemical and physical properties and will need to behave in a multifunctional manner. Researchers have used upconversion nanoparticles (UCNPs) as a basis for superior imaging probes to locate cancerous lesions.
View Article and Find Full Text PDFColloidal hollow mesoporous silica nanoparticles (HMSNs) are aspecial type of silica-based nanomaterials with penetrating mesopore channels on their shells. HMSNs exhibit unique structural characteristics useful for diverse applications: Firstly, the hollow interiors can function as reservoirs for enhanced loading of guest molecules, or as nanoreactors for the growth of nanocrystals or for catalysis in confined spaces. Secondly, the mesoporous silica shell enables the free diffusion of guest molecules through the intact shell.
View Article and Find Full Text PDFChem Commun (Camb)
October 2011
Hierarchically structured zeolites (HSZs) have attracted increasing attention in the last few years, thanks to their unique hierarchical porous structures combining micro- and mesoporosity and superior material performances, especially in the bulky molecules-involved catalysis and adsorption applications. In this Feature Article, the recent advances in the HSZs synthetic methodologies and material performances in catalysis are overviewed. Further, some perspectives for the future development of HSZs are discussed.
View Article and Find Full Text PDFMesoporous thin films synthesized via an electrochemical strategy (ref 1) generally show granular domains, each of which is composed of hexagonally packed one-dimensional channels oriented uniquely perpendicular to the film surface. Grain boundaries either parallel or normal to the channel direction might affect the properties and subsequent application of the film. In this study, the structural details of oriented mesostructured silica thin films have been examined by transmission electron microscope.
View Article and Find Full Text PDFA new catalyst, Pd-SBA, was prepared by the introduction of an Si-H function into the channel of SBA-15 mesoporous materials resulting in a highly dispersed metal colloid layer on the pore walls of the support material, creating one of the most active heterogeneous catalysts for Heck coupling reactions.
View Article and Find Full Text PDF