Publications by authors named "Jian-Lang Li"

For the first time, to the best of our knowledge, a radially polarized laser pulse was produced from a passively Q-switched Nd:YAG ceramic microchip laser with a piece of Cr4+:YAG crystal as the saturable absorber and multilayer concentric subwavelength grating as the polarization-selective output coupler. The averaged laser power reached 450 mW with a slope efficiency of 30.2%.

View Article and Find Full Text PDF

Cylindrical vector beams were produced from laser diode end-pumped Nd:YAG ceramic microchip laser by use of two types of subwavelength multilayer gratings as the axisymmetric-polarization output couplers respectively. The grating mirrors are composed of high- and low-refractive- index (Nb(2)O(5)/SiO(2)) layers alternately while each layer is shaped into triangle and concentric corrugations. For radially polarized laser output, the beam power reached 610mW with a polarization extinction ratio (PER) of 61:1 and a slope efficiency of 68.

View Article and Find Full Text PDF

The radially polarized mode is achieved from an active Yb fiber by utilizing of an intracavity converging axicon, where the axicon acts as a TM(01) mode selector based on not only its Brewster convex surface but also the distance between its vertex and plane output coupler. The polarization state of the annular laser beam is checked by using a home-made eight-hole aperture. Furthermore, an uncoated plane glass plate is inserted into the cavity, and the reflected beam points to the existence of an annular lasing mode inside the gain fiber.

View Article and Find Full Text PDF

For the first time to our knowledge, a radially polarized beam is generated in an Yb-doped multimode double-clad fiber laser by using an intracavity dual conical prism. Up to 6.2 mW of output power is obtained from a 2 m long gain fiber with 7.

View Article and Find Full Text PDF